R 语言高级绘图

庄亮亮

目录

1	使用	ggplot2 包绘图 3
	1.1	qplot
	1.2	ggplot2 包图形语法
		1.2.1 对比不同画图语法
		1.2.2 思想介绍
	1.3	全局变量 vs. 局部变量
	1.4	几何对象 16
		1.4.1 参考书籍 18
	1.5	统计变换
	1.6	刻度 scale
		1.6.1 丰富的刻度体系
	1.7	坐标系
	1.8	分面
	1.9	标题、标注、指南、拼接
		1.9.1 标题
		1.9.2 标注功能
		1.9.3 指南
		1.9.4 主题
	1.10	保存图片
	1.11	例子
		1.11.1 柱状图 + 误差项
		1.11.2 有正值和负值的柱形图
		1.11.3 合并两图

2	其他	相关拓展包	47
	2.1	官网 ggplot81 种拓展包	47
	2.2	我整理的 11 个扩展包	47
3	认识	交互式绘图工具(待补充-更新可见公众号)	48
	3.1	leaflet $@$	49
	3.2	dygraphs 包	49
	3.3	plotly 包	49
	3.4	DT 包	49
	3.5	networkD3 包	50
	3.6	利用 Shiny 包实现可交互的 Web 应用(待补充-更新可见公	
		众号)	50
参	考书籍		51
		Cheatsheet	52
附.	录		54
	安装	R 和 Rstudio	54
		安装 R	54
		安装 RStudio	54
	可能	的问题	56
	如何	获取帮助	59
		言社区	

1 使用 ggplot2 包绘图

ggplot2 包是 Harley Wickham 在 2005 年创建的,是包含了一套全面而连贯的语法的绘图系统。

图 1: Harley Wickham

弥补了 R 中创建图形缺乏一致性的缺点,且不会局限于一些已经定义好的统计图形,可以根据需要创造出任何有助于解决所遇到问题的图形。

核心理念:将绘图与数据分离,数据相关的绘图与数据无关的绘图分离,**按 图层作图**。

1.1 qplot

ggplot2 包的绘图语言与常用的绘图函数的使用方法不同,为了让读者快速使用 ggplot2 包,包的作者 Harley Wickham 提供了 qplot 函数 (quick plot),让人在了解 ggplot2 的语言逻辑之前,就能迅速实现数据的可视化。

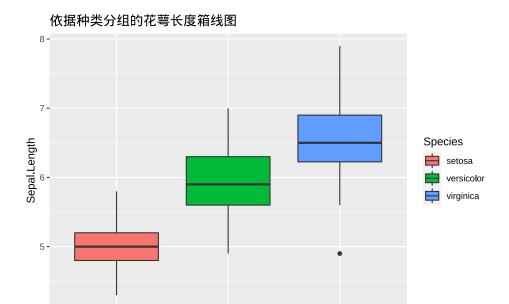
鸢尾花数据集 iris

head(iris, 10)

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
## 1
               5.1
                           3.5
                                         1.4
                                                     0.2 setosa
## 2
               4.9
                           3.0
                                         1.4
                                                     0.2 setosa
## 3
               4.7
                           3.2
                                        1.3
                                                     0.2 setosa
## 4
               4.6
                           3.1
                                        1.5
                                                     0.2 setosa
## 5
               5.0
                           3.6
                                                     0.2 setosa
                                         1.4
               5.4
                           3.9
                                                     0.4 setosa
## 6
                                         1.7
## 7
               4.6
                           3.4
                                         1.4
                                                     0.3 setosa
## 8
               5.0
                           3.4
                                         1.5
                                                     0.2 setosa
## 9
               4.4
                           2.9
                                         1.4
                                                     0.2 setosa
## 10
               4.9
                           3.1
                                         1.5
                                                     0.1 setosa
```

```
## 'data.frame': 150 obs. of 5 variables:
```

```
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ...
```

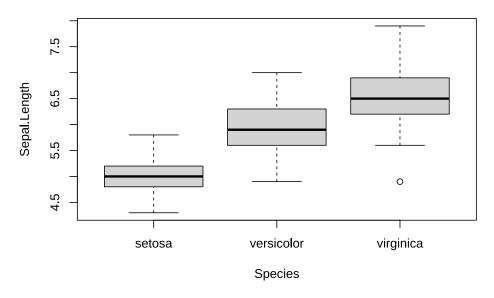

• 例子一:

str(iris)

创建一个以物种种类为分组的花萼长度的箱线图,箱线图的颜色依据不同 的物种种类而变化。

```
library(ggplot2)
qplot(Species, Sepal.Length, data = iris, geom = "boxplot",
fill = Species, main = " 依据种类分组的花萼长度箱线图")
```

setosa

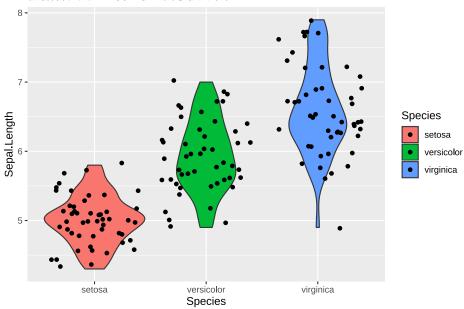


versicolor Species

boxplot(Sepal.Length~Species,data =iris,main = " 依据种类分组的花萼长度箱线图")

virginica

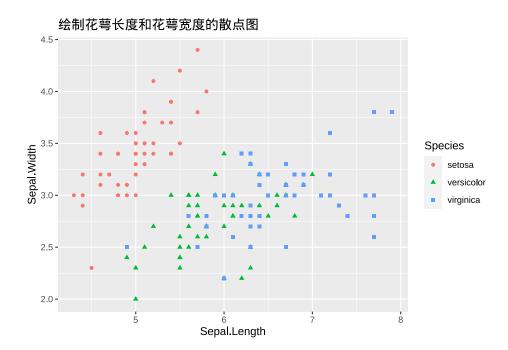
依据种类分组的花萼长度箱线图



• 例子二:

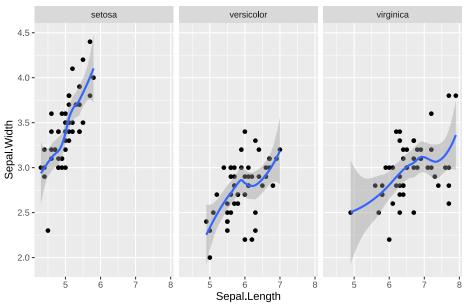
利用 qplot 函数画出小提琴图, 只需要将 geom 设置为 "violon"即可, 并添加扰动以减少数据重叠。

```
qplot(Species, Sepal.Length, data = iris, geom = c("violin", "jitter"), fill = Species,main = " 依据种类分组的花萼长度小提琴图")
```


依据种类分组的花萼长度小提琴图

• 例子三:

建一个以花萼长度和花萼宽度的散点图,并利用颜色和符号形状区分物种种类。


```
qplot(Sepal.Length, Sepal.Width, geom = "point",data = iris, colour = Species,
shape = Species,main = " 绘制花萼长度和花萼宽度的散点图")
```

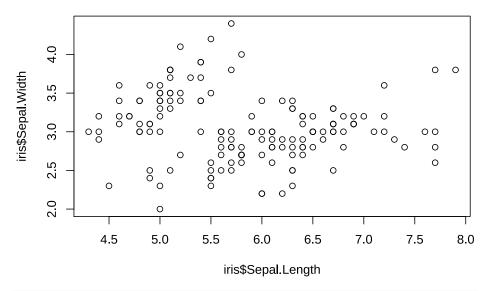

• 例子四:

利用 facets 参数绘制分面板散点图, 并增加光滑曲线。

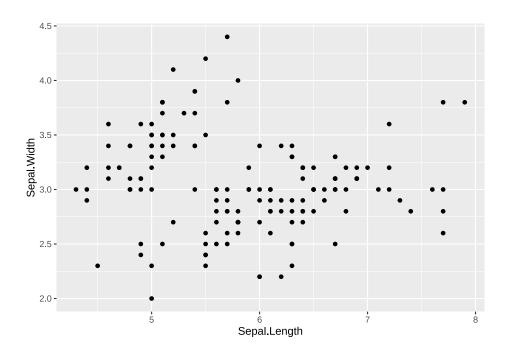
1.2 ggplot2 包图形语法

推荐书籍:

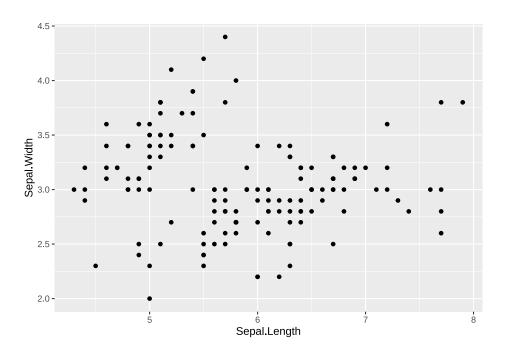
ggplot2: Elegant Graphics for Data Analysis https://ggplot2-book.org/ Fundamentals of Data Visualization https://clauswilke.com/dataviz/


1.2.1 对比不同画图语法

以绘制 iris 数据集中 Sepal.Length 与 Sepal.Width 的散点图为例, 分别采用 内置的 plot 函数与 ggplot2 包的 ggplot 函数绘制散点图, 对比理解 ggplot2 包的语言逻辑。


代码 (三种类型):

#基础包


plot(iris\$Sepal.Length, iris\$Sepal.Width)

qplot()
qplot(x = Sepal.Length, y = Sepal.Width,data = iris,geom = "point")

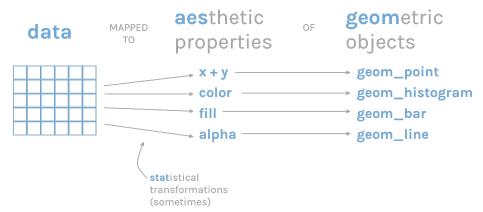

```
# ggplot()
ggplot(data= iris, aes(x = Sepal.Length, y = Sepal.Width)) + # 绘制底层画布
geom_point() # 在画布上添加点
```


1.2.2 思想介绍

注: 该部分主要参考数据科学中的 R 语言——王敏杰。

ggplot 的绘图有以下几个特点。

- 1. 有明确的起始(以 ggplot 函数开始)与终止(一句语句一幅图)。
- 2. ggplot2 语句可以理解为一句语句绘制一幅图,然后进行图层叠加,而叠加是通过"+"号把绘图语句拼接实现的。


ggplot 函数包括 9 个部件:

- 数据 (data) (数据框)
- 映射 (mapping)

- 几何对象 (geom_point(), geom_boxplot())
- 统计变换 (stats)
- 标度 (scale)
- 坐标系 (coord)
- 分面 (facet)
- 主题 (theme)
- 存储和输出 (output)

其中前三个是必需的。

Hadley Wickham 将这套可视化语法诠释为:一张统计图形就是从**数据**到几何对象 (geometric object,缩写 geom) 的图形属性 (aesthetic attribute,缩写 aes)的一个映射。

此外,图形中还可能包含数据的**统计变换** (statistical transformation,缩写 stats),最后绘制在某个特定的**坐标系** (coordinate system,缩写 coord)中,而**分面** (facet)则可以用来生成数据不同子集的图形。

例子(带你入门)

```
ggplot(data = iris, mapping = aes(Petal.Length,Petal.Width)) +
geom_point(size = 2,alpha = 0.5,col ="red") +
geom_smooth(method = "lm",se = F)
```

```
ggplot(data = <DATA> , mapping = aes(<MAPPINGS>)) +

<GEOM_FUNCTION> (
    stat = <STAT> ,
    position = <POSITION>
) +

<COORDINATE_FUNCTION> +

<FACET_FUNCTION> +

<SCALE_FUNCTION> +

<THEME_FUNCTION>
```

图 2: 语法模板

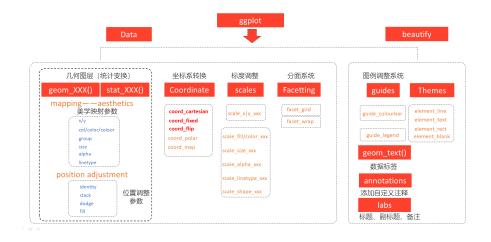
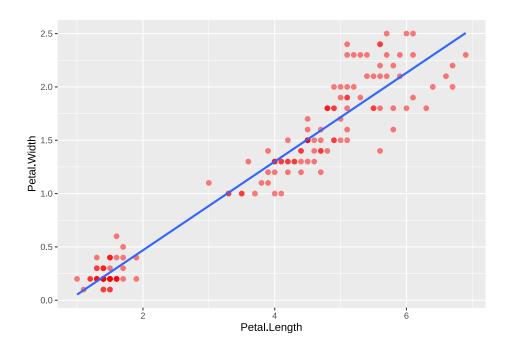
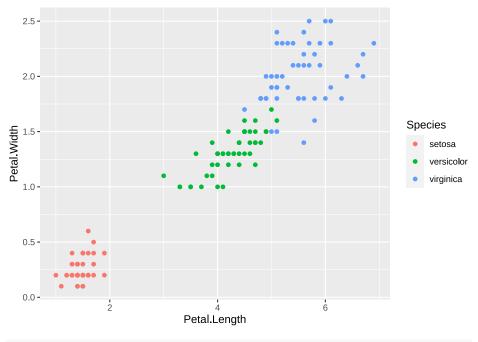
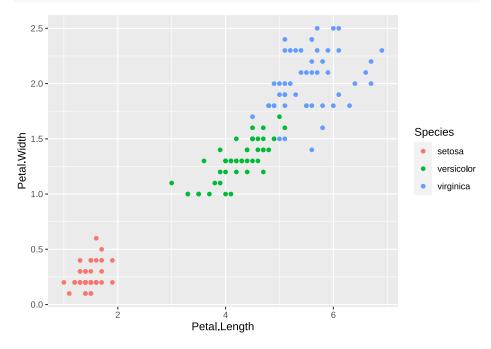




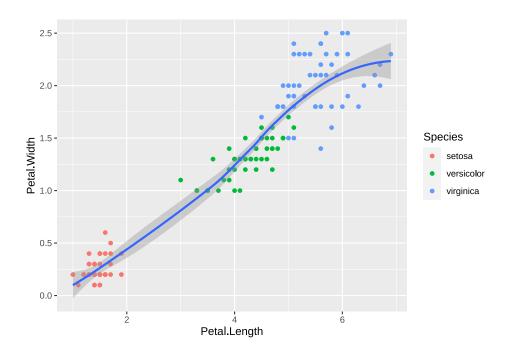
图 3: 把这看懂其实差不多了



1.3 全局变量 vs. 局部变量

```
ggplot(data = iris, mapping = aes(x = Petal.Length,y = Petal.Width, col = Species)) +
  geom_point()
```


大家可以看到,以上两段代码出来的图是一样。但背后的含义却不同。


例子 (观察两者之间的区别)

```
# 版本一
ggplot(data = iris, mapping = aes(x = Petal.Length,y = Petal.Width, col = Species)) +
geom_point() +
geom_smooth()

Species
setosa
versicolor
virginica
```

```
# 版本二
ggplot(data = iris, mapping = aes(x = Petal.Length,y = Petal.Width)) +
geom_point(mapping = aes(col = Species)) +
geom_smooth()
```

4 Petal.Length

1.4 几何对象

geom_xxx()提供了各种基本图形。列表如下:

• 基础图形:

- geom_blank() 不画图,可以按映射的变量设定坐标范围;
- geom_point()每个观测为一个散点;
- geom_hline(), geom_vline(), geom_abline() 画线;
- geom_path()每个观测提供坐标,在相邻观测之间连线;
- geom_ribbon() 需要 x 和 ymin, ymax 维, 在从小到大排序后的相邻观测之间连接阴影区域;
- geom_segment() 需要 x, y 和 xend, yend, 为每个观测画一条线段;
- geom_rect() 需要 xmin, xmax, ymin, ymax, 为每个观测画一个 长方形,可有填充色;
- geom_polygon() 需要 x, y, 将相邻观测连续并连接成一个闭合的多边形,中间填充颜色;

- geom_text() 需要 x, y 和 lable,每个观测画一条文字标签。

• 单变量图层:

- geom_bar(), geom_col() 作条形图;
- geom_histogram() 对连续变量 x 作直方图;
- geom_density() 对连续变量 x 作一元密度估计曲线;
- geom_dotplot() 用原点作直方图;
- geom_freqpoly() 用折线作直方图。

• 两变量图形:

- 两个连续变量 x, y:
 - * geom_point() 散点图;
 - * geom_quantile() 拟合分位数回归曲线;
 - * geom_rug() 在坐标轴处画数值对应的短须线;
 - * geom_smooth() 画各种拟合曲线;
 - * geom_text() 在指定的 x, y 位置画 label 给出的文字标签;

- 显示二元分布:

- * geom_bin2d() 作长方形分块的二维直方图;
- * geom_density2d() 作二元密度估计等值线图;
- * geom_hex() 作正六边形分块的二维直方图。

- 两个变量中有分类变量时:

- * geom_count(): 重叠点越多画点越大;
- * geom_jitter(): 随机扰动散点位置避免重叠,数值变量有重叠时也可以用;

- 一个连续变量和一个分类变量:

- * geom_col() 作条形图,对分类变量的每个值画一个条形,长 度与连续变量值成比例;
- * geom_boxplot()对每个类做一个盒形图;
- * geom_violin()对每个类做一个小提琴图。

- 一个时间变量和一个连续变量:
 - * geom_area() 作阴影曲线图, 曲线下方填充阴影色;
 - * geom_line() 作折线图, 在相邻两个时间之间连接线段;
 - * geom_step() 作阶梯函数图,在相邻两个时间之间连接阶梯函数线。

- 不确定性:

- * geom_crossbar() 对每个观测输入的 x, y, ymin, ymax 画中间有线的纵向条形;
- * geom_errbar() 对每个观测输入的 x, ymin, ymax 画纵向误 差条;
- * geom_linerange() 对每个观测输入的 x, ymin, ymax 画一条 竖线;
- * geom_pointrnage() 对每个观测输入的 x, y, ymin, ymax 画 一条中间有点的竖线。

• 地图:

- geom_map(): 用区域边界坐标数据画边界线地图。

• 三个变量:

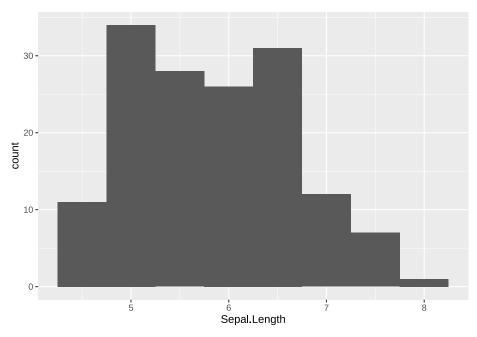
- geom_contour(): 用输入的 x, y, z 数据画等值线图。
- geom_tile() 用输入的 x, y 位置, width, height 大小和指定的 fill 维画长方形色块填充图。
- geom_raster() 是 geom_tile() 的长方形大小相同时的快速版本。

1.4.1 参考书籍

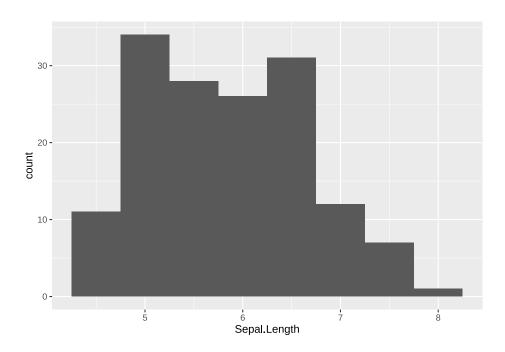
由于这部分内容非常的多,短短两小时不可能讲完,这里给了一些参考资料,各个都是满满的干货。

• 数据科学中的 R-第 14 章 ggplot 之集合对象

- R 语言教程第 30 节-ggplot 各种图形
- Top 50 ggplot2 Visualizations
- \bullet Chapter 3: Data Visualisation of R for Data Science
- Chapter 28: Graphics for communication of R for Data Science
- \bullet Graphs in R Graphics Cookbook


1.5 统计变换


概念: 对数据所应用的统计类型/方法。


ggplot2 为每一种几何类型指定了一种默认的统计类型,如果仅指定 geom 或 stat 中的一个,另外一个会自动获取。其中,stat_identity 则表示不做任何的统计变换。

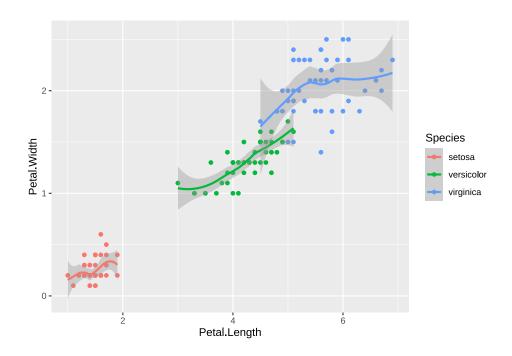
示例: 只需指定 geom 或 stat 中的一个,具体细小细节可以参考这 https://bookdown.org/wangminjie/R4DS/ggplot2-stat-layer.html

```
ggplot(iris) +
geom_bar(aes(x=Sepal.Length), stat="bin", binwidth = 0.5)
```


1.6 刻度 scale

这一节我们一起学习 ggplot2 中的 scales 语法,推荐大家阅读 Hadley Wickham 最新版的《ggplot2: Elegant Graphics for Data Analysis》,但如果需要详细了解标度参数体系,还是要看ggplot2 官方文档

在 ggplot() 的 mapping 参数中指定 x 维、y 维、color 维等,实际上每一维度都有一个对应的默认刻度 (scale),即,将数据值映射到图形中的映射方法。


如果需要修改刻度对应的变换或者标度方法,可以调用相应的 scale_xxx() 函数。

画图都没用到 scale 啊!

能画个很漂亮的图, 那是因为 ggplot2 默认缺省条件下, 已经很美观了。(据说 Hadley Wickham 很后悔使用了这么漂亮的缺省值, 因为很漂亮了大家都不认真学画图了。马云好像也说后悔创立了阿里巴巴?)

#解释

```
ggplot(data = iris, mapping = aes(x = Petal.Length,y = Petal.Width, col = Species)) +
  geom_point() +
  geom_smooth()
```


1.6.1 丰富的刻度体系

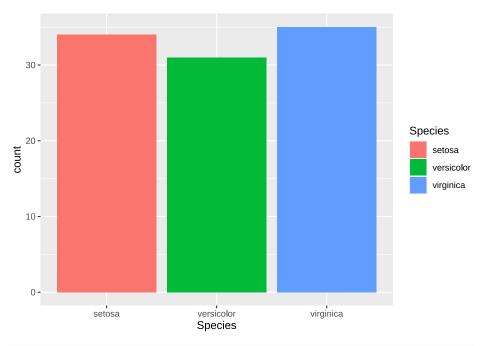
注意: 标度函数是由 "_" 分割的三个部分构成的 - scale - 视觉属性名 (e.g., colour, shape or x) - 标度名 (e.g., continuous, discrete, brewer).

• 将数据变量映射到具体的位置、颜色、填充色、大小、符号等。

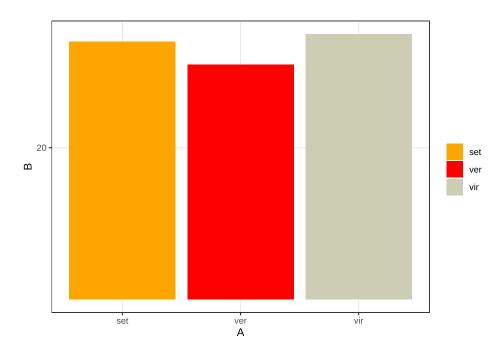
	连续型	离散型	自定义	同一型
坐标轴标度	scale_x_conintuous() scale_x_log10() scale_x_sqrt() scale_x_reverse() scale_x_date() scale_x_datetime() scale_x_datetime()	scale_x_discrete()		
 類色标度	<pre>scale_color_continous() scale_color_distiller() scale_color_gradient() scale_color_gradient2() scale_color_gradienth() scale_color_varients()</pre>	<pre>scale_color_discrete scale_color_brewer() scale_color_hue() scale_color_grey() scale_color_viridis_d()</pre>	scale_color_manual()	scale_color_identity()
填充标度	scale_fill_continous() scale_fill_distiller() scale_fill_gradient() scale_fill_gradient2() scale_fill_gradientn() scale_fill_viridis_c()	<pre>scale_fill_discrete() scale_fill_brewer() scale_fill_brewe() scale_fill_grey() scale_fill_viridis_d()</pre>	scale_fill_manual()	scale_fill_identity()
大小标度	scale_size() scale_size_area() scale_radius()		scale_size_manual()	scale_size_identity()
透明度标度	scale_alpha() scale_alpha_continuous()	scale_alpha_discrete()	scale_alpha_manual()	scale_alpha_identity()
线条标度		scale_linetype() scale_linetype_discrete()	scale_linetype_manual()	scale_linetype_identity()
形状标度		scale_shape()	scale_shape_manual()	scale_shape_identity()
参数列表	name limits breaks labe	ls guide na.value	values	

每个标度函数内部都有丰富的参数系统

```
scale_colour_manual(
  palette = function(),
  limits = NULL,
  name = waiver(),
  labels = waiver(),
  breaks = waiver(),
  minor_breaks = waiver(),
  values = waiver(),
  ...
)
```

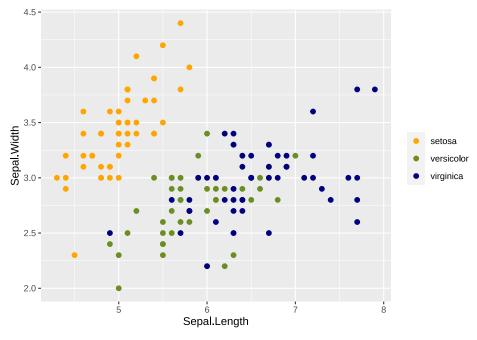

- 参数 name, 坐标和图例的名字, 如果不想要图例的名字, 就可以 name = NULL
- 参数 limits, 坐标或图例的范围区间。连续性 c(n, m), 离散型 c("a", "b", "c")
- 参数 breaks, 控制显示在坐标轴或者图例上的值 (元素)
- 参数 labels, 坐标和图例的间隔标签
 - 一般情况下, 内置函数会自动完成

- 也可人工指定一个字符型向量,与 breaks 提供的字符型向量一一对应
- 也可以是函数, 把 breaks 提供的字符型向量当做函数的输入
- NULL,就是去掉标签
- 参数 values 指的是(颜色、形状等)视觉属性值,
 - 要么,与数值的顺序一致;
 - 要么,与 breaks 提供的字符型向量长度一致
 - 要么, 用命名向量 c("数据标签"="视觉属性")提供
- 参数 expand, 控制参数溢出量
- 参数 range, 设置尺寸大小范围, 比如针对点的相对大小

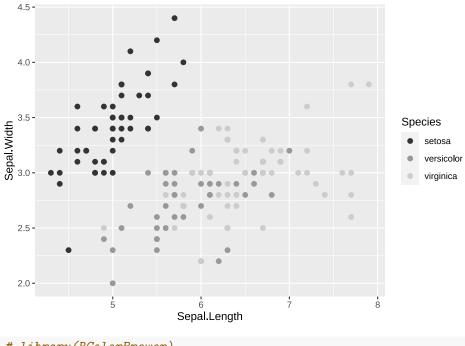

下面,我们通过具体的案例讲解如何使用参数,把图形变成我们想要的模样。

例子: 随机从 iris 数据集的 150 个样本中抽取 100 个样本,并绘制条形图 反映 100 个样本中各个鸢尾花种类的数量情况。然后通过修改标尺参数做前后对比图,进而理解标尺在 ggplot2 包中的作用。

```
set.seed(1) # 设置随机种子
my_iris <- iris[sample(1:150, 100, replace = FALSE),] # 随机抽样
p <- ggplot(my_iris) +
    geom_bar(aes(x = Species, fill = Species))
p
```




```
p + scale_fill_manual(
    values = c("orange", "red", "lightyellow3"), # 颜色设置
    name = NULL, # 图例和轴使用的名称
    labels = c("set", "ver", "vir") # 图例使用的标签
) +
    scale_x_discrete(labels = c("set", "ver", "vir"),name = "A") +
    scale_y_continuous(name = "B",breaks = c(20,40)) +
    theme_bw()
```



使用 scale_color_manual 或 scale_color_brewer 函数修改图形的颜色。在对 iris 数据集中的 Sepal.Length 与 Sepal.Width 的散点图分别使用以上两种方法修改散点颜色

```
# 图一: 使用 scale_color_manual 函数
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, colour = Species))+
geom_point(size = 2) +
scale_color_manual(values = c("orange", "olivedrab", "navy"),
name = NULL)
```



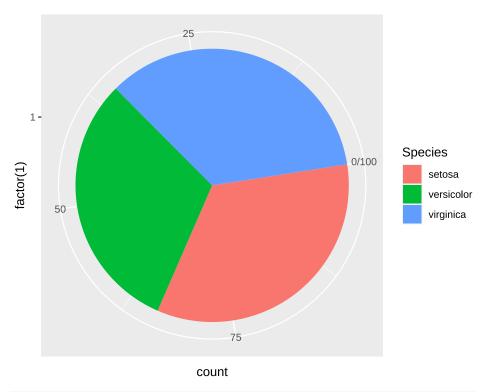
```
# 图二:使用 scale_color_brewer 函数
ggplot(iris,aes(x = Sepal.Length, y = Sepal.Width, colour = Species))+
scale_color_grey()+
geom_point(size=2)
```



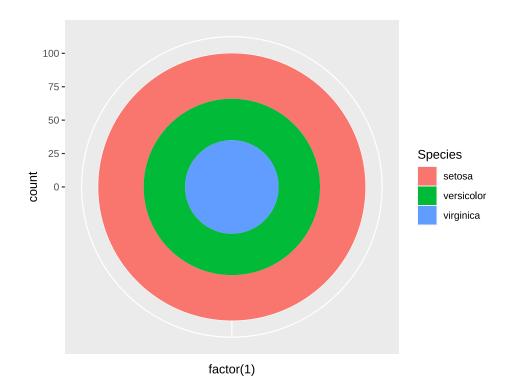
```
# library(RColorBrewer)
# brewer.pal(3, "Set1")
# display.brewer.all()
```

1.7 坐标系

ggplot2 默认的坐标系是笛卡尔坐标系,可以用如下方法指定取值范围: coord_cartesian(xlim = c(0,5), ylim = c(0,3))。


coord_flip: x 轴和 y 轴换位置。

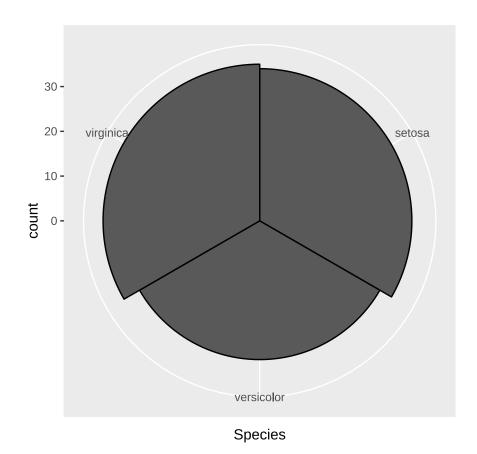
coord_polar(theta = "x",direction=1) 是角度坐标系,theta 指定角度对应的变量, start 指定起点离 12 点钟方向的偏离值, direction 若为 1 表示顺时针方向, 若为-1 表示逆时针方向。


```
# 饼图 = 堆叠长条图 + polar_coordinates

pie <- ggplot(my_iris, aes(x = factor(1), fill = Species)) +
    geom_bar(width = 1)

pie + coord_polar(theta = "y", direction = -1, start = 30)
```


靶心图 = 饼图 + polar_coordinates
pie + coord_polar()



锯齿图 = 柱状图 + polar_coordinates

cxc <- ggplot(my_iris, aes(x = Species)) +

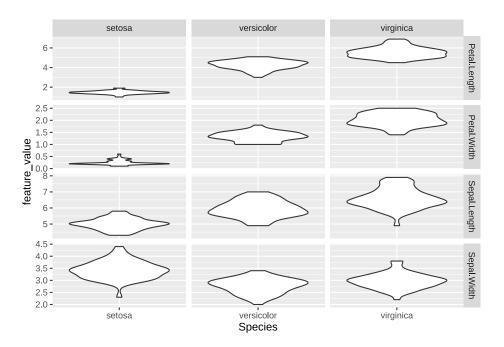
geom_bar(width = 1, colour = "black")

cxc + coord_polar()

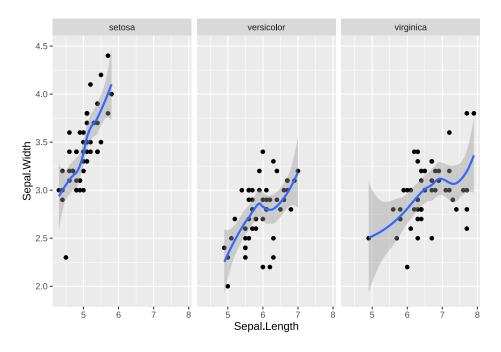
1.8 分面

分面,就是分组绘图,根据定义的规则,将数据分为多个子集,每个子集按 照统一的规则单独制图,排布在一个页面上。

ggplot2 提供两种分面方法: facet_grid 函数和 facet_wrap 函数。

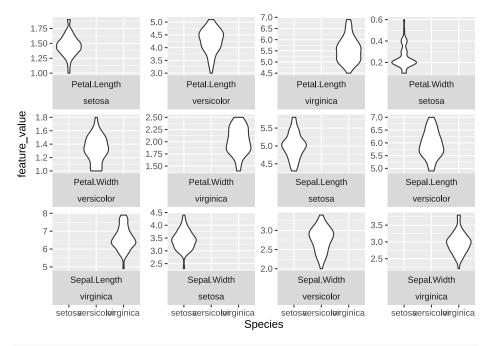

1. facet_grid 函数

注意 facet_grid 函数是一个二维的矩形布局,每个子集的位置由行位置 变量 ~ 列位置变量的决定

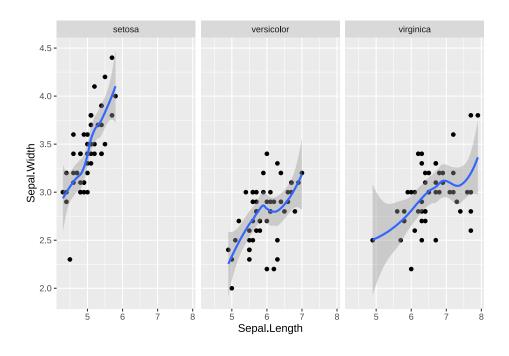

library(ggplot2)

library(tidyr)

```
library(dplyr)
my_iris1 <- iris %>% gather(feature_name, feature_value, one_of(c("Sepal.Length", "Sepa ggplot(my_iris1) +
    geom_violin(aes(x = Species, y = feature_value)) + # 绘制小提琴图
facet_grid(feature_name ~ Species, scales = "free") # 分面
```




```
# iris 例子
ggplot(data = iris, mapping = aes(x = Sepal.Length, y = Sepal.Width)) + #底层画布
geom_point() +
geom_smooth() +
facet_grid(~Species)
```



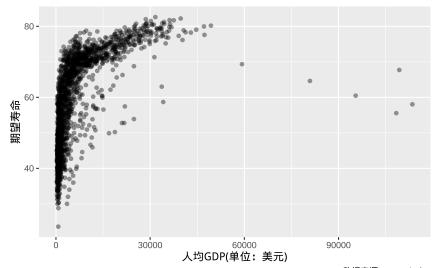
2. facet_wrap 函数

facet_wrap 函数生成一个动态调整的一维布局,根据 "~ 位置变量 1+ 位置 变量 2+..."来确定每个子集的位置,先逐行排列,放不下了移动到下一行。


```
# iris 例子
ggplot(data = iris, mapping = aes(x = Sepal.Length, y = Sepal.Width)) + #底层画布
geom_point() +
geom_smooth()+
facet_wrap(~Species)
```


1.9 标题、标注、指南、拼接

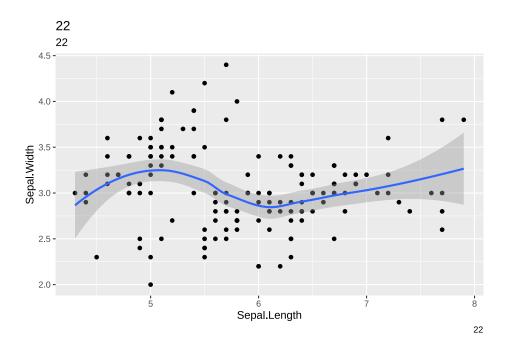
除了 ggplot() 指定数据与映射, geom_xxx() 作图, 还可以用许多辅助函数增强图形。


- labs() 可以设置适当的标题和标签。
- annotate()函数可以直接在坐标系内进行文字、符号、线段、箭头、 长方形的绘制。
- guides()函数可以控制图例的取舍以及做法。
- theme()函数可以控制一些整体的选项如背景色、字体类型、图例的 摆放位置等。

1.9.1 标题

函数 labs()可以用来指定图形上方的标题(title)、副标题(subtitle)、 右下方的标注(caption)、左上方的标签以及坐标轴标题和其它维的名称。 例如:

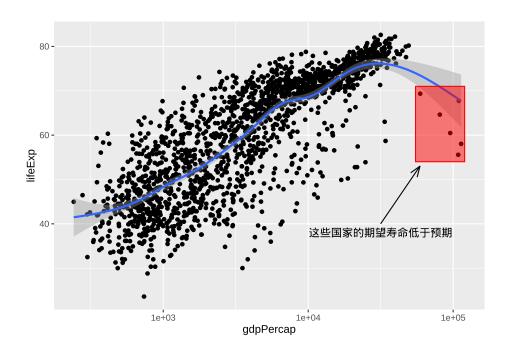
散点图


各国各年度人均GDP与期望寿命的关系 1952-2007

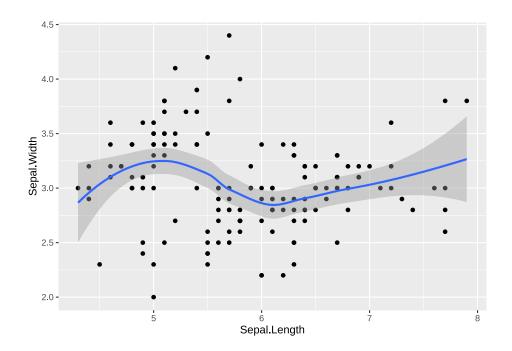
数据来源: gapminder

```
#iris 案例
ggplot(data = iris, mapping = aes(x = Sepal.Length, y = Sepal.Width)) + # 底层画布
```

```
geom_point() +
geom_smooth() +
labs(
   title = "22",
   subtitle = "22",
   caption = "22"
)
```



labs() 只是提供了这些标题功能,一般并不会同时使用这些功能。在出版图书内,图形下方一般伴随有图形说明,这时一般就不再使用标题、副标题、标签、标注,而只需写在图的伴随说明文字中,当然,坐标轴标签一般还是需要的。


1.9.2 标注功能

通过 annotate(geom = "text") 调用 geom_text() 的功能,可以在一个 散点图中标注多行文字,多行之间用"\n" 分开:

在 annotate() 中选 geom="rect",给出长方形的左右和上限界限,可以将上面图形中最右侧偏低的点用长方形填充标出。可以在 annotate()中选 geom="line" 画线,需要给出线的起点和终点坐标,可以 arrow 选项要求画箭头,用 arrow()函数给出箭头的大小、角度等设置,如:


```
#iris 例子 + annotate, hline, abline
ggplot(data = iris, mapping = aes(x = Sepal.Length, y = Sepal.Width)) + #底层画布
geom_point() +
geom_smooth()
```


可以用 geom_hline()、geom_vline() 和 geom_abline() 画横线、竖线、斜线。ggplot2 的默认主题会自动画参考线,可以用 theme() 函数指定参考线画法。

1.9.3 指南

对于颜色、填充色等维度,会自动生成图例。用 guides(color = FALSE) 这样的方法可以取消指定维度的图例。

theme()可以调整一些整体的设置,如背景色、字体、图例的摆放位置。

例如:用 theme()的 legend.position改变图例的位置,如 theme(legend.position = "top")可以将图例放置在上方,默认是放置在右侧的。可取值有"none"、

"left"、"right"、"bottom"、"top", 如:

1.9.4 主题

ggplot2包作图可以实现内容与设计的分离,这里内容就是指数据、映射、统计、图形类型等方面,而设计就是指背景色、颜色表、字体、坐标轴做法、图例位置等的安排。将作图任务分解为内容与设计两个方面,可以让数据科学家不必关心设计有关的元素,而设计可以让专门的艺术设计人才来处理。这种工作分配已经在图书出版、网站、游戏开发等行业发挥了重要作用。

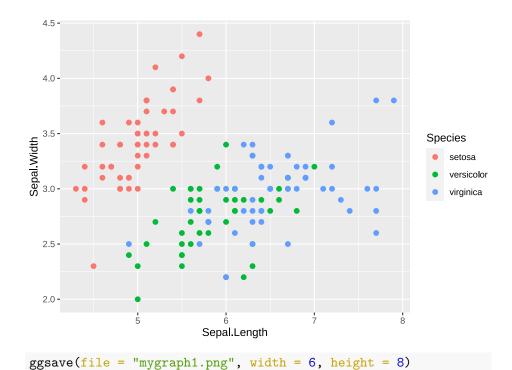
theme() 函数用来指定设计元素,称为主题 (theme),而且可以单独开发 R 扩展包来提供适当的主题。**ggthemes 扩展包**是一个这样的包。

theme_set() 可以改变后续 ggplot2 作图的主题(配色、字体等)。如 theme_set(theme_bw()),theme_set(theme_dark()) 等。对单次绘图,可以直接用加号连接 theme_gray() 等这些主题函数。主题包括theme_gray()(默认主题)、theme_minimal()、theme_classic()等。

theme()函数还可以直接指定颜色、字体、大小等设置。

#iris 例子

1.10 保存图片


ggplot2 包中提供 ggsave 函数进行图形保存。ggsave 函数的使用格式如下 所示。

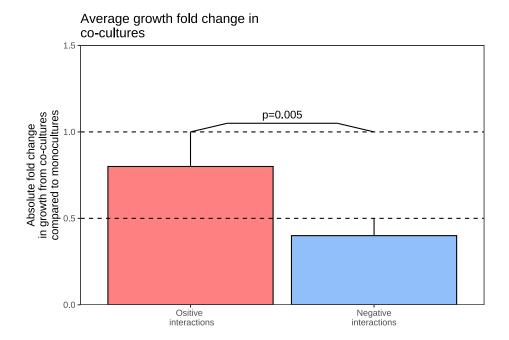
ggsave(filename, width, height,...)

其中, filename 为保存的文件名与路径, width 指图像宽度, height 指图像高度。

示例: 运行下列代码将会在当前工作目录下生成一个名为 mygraph 的 pdf 图形。

```
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, colour = Species))+
geom_point(size = 2)
```


或者可以使用 Rstudio 界面进行保存图片,具体教程课件(R 语言可视化基础教程)

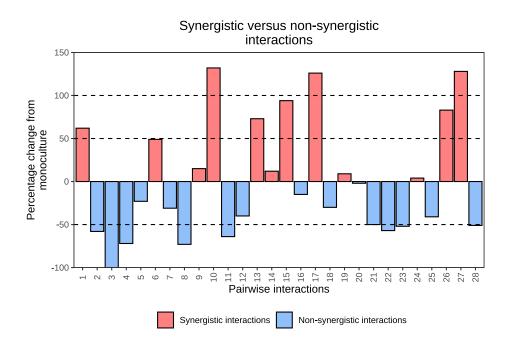

1.11 例子

该部分来源于:公众号 [小明的数据分析笔记本]。大家可以通过以下例子对今天所学的知识进行回顾。

1.11.1 柱状图 + 误差项

```
## 小明推送笔记《小明的数据分析笔记本》
# 跟着 Nature microbiology 学画图 ~R 语言 ggplot2 画柱形图
# https://mp.weixin.qq.com/s/E-1X_VSq03AhvC_OcNEgyQ
library(ggplot2)
```

```
### 柱状图 + 误差项
data = data.frame("group" = c("A", "B"), "value"=c(0.8, 0.4), "errorbar"=c(.2, .1))
data
##
    group value errorbar
                     0.2
## 1
            0.8
## 2
        В
            0.4
                     0.1
p1 = ggplot(data, aes(x = group, y = value)) +
  geom_col(aes(fill=group),color="black") + # 柱状图
  geom_hline(yintercept = 1,lty = 2) + # 加横线
  geom_hline(yintercept = 0.5,lty = "dashed") +
  theme_bw() + # 主题设置
  theme(panel.grid = element_blank(), # 网格为空
       legend.position = "none") + #legend 位置为无, 就是不加
  scale_y_continuous(expand = c(0,0),limits = c(0,1.5)) + #y 为连续,设置 ylim
  scale_x_discrete(label = c("Ositive \n interactions", "Negative\ninteractions")) + #x
  annotate("segment", x=1, y=0.8, xend=1, yend=1) + # 加线段 segment, 当然这个函数可以加很多其
  annotate("segment", x=2, y=0.4, xend=2, yend=0.5) +
  labs(x = NULL, # 标签, 注意\n 可以空行
      y = 'Absolute fold change\nin growth from co-cultures\ncompared to monocultures'
      title = "Average growth fold change in\nco-cultures") +
  annotate("segment", x=1, y=1, xend=1.2, yend=1.05) +
  annotate("segment", x=2, y=1, x=0=1.8, y=0=1.05) +
  annotate("segment", x=1.2, y=1.05, xend=1.8, yend=1.05) +
  annotate("text", x = 1.5, y = 1.1, label = "p=0.005") +
  scale_fill_manual(values = c("#ff8080","#90bff9")) # 填充色使用离散颜色 manual, 两种颜色
p1
```



1.11.2 有正值和负值的柱形图

```
## 有正值和负值的柱形图
x <- 1:28
y \leftarrow sample(-100:150,28,replace = F)
df2 <- data.frame(x,y)</pre>
df2x = as.factor(df2x)
df2$group <- ifelse(df2$y>0,"A","B")
df2$group<-factor(df2$group,
                  labels = c("Synergistic interactions",
                              "Non-synergistic interactions"))
head(df2)
##
                                    group
     х
          У
                Synergistic interactions
## 1 1
         62
```

-58 Non-synergistic interactions

```
## 3 3 -100 Non-synergistic interactions
## 4 4 -72 Non-synergistic interactions
## 5 5 -23 Non-synergistic interactions
## 6 6
         49
                Synergistic interactions
p2 = ggplot(df2, aes(x,y)) +
  geom_col(aes(fill = group),col = "black") +
  geom_hline(yintercept = 100,lty = "dashed") +
  geom_hline(yintercept = 50,lty = "dashed") +
  geom_hline(yintercept = -50,lty = "dashed") +
  theme_bw() +
  theme(panel.grid = element_blank(),
        axis.text.x = element_text(angle = 90,hjust = 0.5,
                                   vjust = 0.5),
        plot.title = element_text(hjust = 0.5),
        legend.position = "bottom",
        legend.title = element_blank()) + # 取消标签的名称
  scale_y_continuous(expand = c(0,0),
                     limits = c(-100, 150),
                     breaks = c(-100, -50, 0, 50, 100, 150)) +
  labs(x="Pairwise interactions",
       y="Percentage change from\nmonoculture",
       title = "Synergistic versus non-synergistic\ninteractions") + # 标签说明
  scale fill manual(values = c("#ff8080","#90bff9"))
p2
```


1.11.3 合并两图

合并两图或者多图可以使用以下包:

- cowplot 包的 plot_grid()
- pathwork 包
- gridEctra 包的 grid.arrange()

具体可以参考我公众号的这篇推文R 可视乎 | 合并多幅图形

这里使用了 cowplot 包

```
## 合并两图 (使用 cowplot 包)
library(cowplot)
pdf("plot_cow.pdf",width = 8,height = 4)
plot_grid(p1,p2,ncol = 2,nrow = 1,labels = c("d","e"))
dev.off()

## pdf
## 2
```

2 其他相关拓展包

介绍一些 ggplot2 扩展可视化包以及其他实用的包。全部在这:其他相关拓展包

2.1 官网 ggplot81 种拓展包

官网一共汇总了 81 种拓展的 ggplot 包ggplot81 种拓展包

2.2 我整理的 11 个扩展包

- 1. ggvis 包—数据可视化交互
- 2. ggridges 包—峰峦图详细介绍
- 3. esquisse 包—不写代码生成 ggplot 图
- 4. calendR 包—私人定制专属日历
- 5. corrplot 包:相关性矩阵可视化
- 6. cowplot 包:用R添加水印
- 7. flexdashboard 包:用于 R 的简单交互式仪表盘
- 8. gghalves 包-你五毛我五毛
- 9. 用 ggpubr 包制图
- 10. reticulate 包——数据科学者的福音
- 11. igraph 包——绘制网络图
- 12. ggthemes待补充
- 13. gganimate待补充

3 认识交互式绘图工具(待补充-更新可见公众号)

前面可视化的结果就是一个静态的图形,所有信息都一目了然地放在一张 图上。

静态图形适合于分析报告等纸质媒介,而在网络时代,如果在网页上发布可 视化,那么动态的、交互的图形则更有优势。

在 R 的环境中, 动态交互图形的优势在于能和 knitr, shiny 等框架整合在一起, 能迅速建立一套可视化原型系统。

由于 pdf 不支持 html 有关的图形输出,这里只给代码,可以自行运行,查看结果。

注意:提前安装好相应的包。

htmlwidgets 包,这是一个专为 R 语言打造的可视化 JS 库,只需要编写几行 R 语言代码便可生成交互式的可视化页面。目前已经有基于 htmlwidgets制作的 R 包可供直接调用,具体名称及对应作用见表

R包的名称	功能描述
leaflet	互动地图,与OpenStreetMap,Mapbox,andCartoDB地图互动
dygraphs	时间序列可视化,
plotly	交互式可视化,可以将ggplot2图形转化成交互式的
highcharter	HighchartersJS图形库的R接口
visNetwork	基于vis.js网络可视化
networkD3	基于D3JS网络可视化,
d3heatmap	与 D3 交互的热图
DT	交互式数据表格
rthreejs	交互式3D图形
rglwidget	提供WebGL场景
DiagrammeR	创建流程图的工具
metricsgraphics	MetricsGraphics.js的htmlwidget接口

3.1 leaflet 包

```
library(leaflet)
leaflet()%>%
  addTiles()%>%
  addMarkers(lng=174.768,lat=-36.852,popup="ThebirthplaceofR")
```

3.2 dygraphs 包

```
library(dygraphs)
lungDeaths <- cbind(mdeaths, fdeaths)
dygraph(lungDeaths)</pre>
```

3.3 plotly 包

3.4 DT 包

```
library(DT)
datatable(iris)
```

3.5 networkD3 包

3.6 利用 Shiny 包实现可交互的 Web 应用 (待补充-更新可见公众号)

shiny 的官网包含了非常多的内容,包括详细教程,案例等。网站地址如下: https://shiny.rstudio.com/tutorial/

参考书籍

这里书籍都有线上免费版本,可以点击书籍名称跳转。

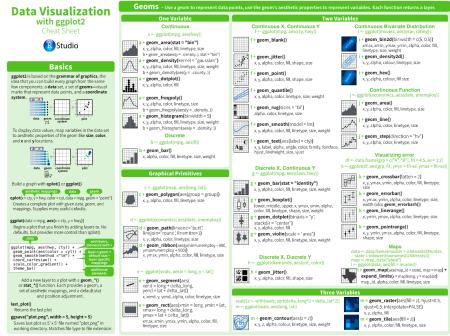
- R 语言基础教程——李东风
- 数据科学中的 R 语言——王敏杰
- ggplot2 书
- ggplot2 画廊
- R 数据科学
- ggplot2: Elegant Graphics for Data Analysis
- Fundamentals of Data Visualization

其他有关 R 语言统计与绘图的书籍可在《庄闪闪的 R 语言手册》(可跳转) 命令窗口输入 "R" 获取。也欢迎关注我的个人公众号,和我一起学 R,统计和数据科学。

knitr::include_graphics('vcode.jpg')

图 4: 个人公众号: 庄闪闪的 R 语言手册

其他联系方式 (可跳转):


- 知乎
- Github
- CSDN
- b 站

Cheatsheet

这里分享 ggplot2 的小抄,基本的函数以及内部参数都给了详细的介绍。可以打印出来每天看看,或者当作工具书进行查阅。

其他 cheatsheets 可以在我的公众号回复(cheatsheet)获得。

附录

为了方便初学者快速入门以及文稿的完整性,这里罗列了常用问题的介绍, 包括:安装 R 和 Rstudio,使用 Rstudio 可能遇到的问题以及如何获取帮 助。

注:该部分来源于《数据科学中的 R 语言》。

安装 R 和 Rstudio

R 软件是一个自由、开源软件平台,具有统计分析、可视化和编程的强大 功能。你可以从这里免费下载。为了更好的使用 R 软件, 我推荐大家使用 RStudio 这个 IDE。这里有个在线教程帮助我们熟悉 R 和 RStudio。

安装 R

我们从官方网站 http://cran.r-project.org 下载, 网站界面感觉有点朴素:

The Comprehensive R Archive Network

Download and Install R

Precompiled binary distributions of the base system and contributed packages, **Windows and Mac** users most likely want one of these versions of R:

- Download R for Linux Download R for (Mac) OS X
- Download R for Windows

R is part of many Linux distributions, you should check with your Linux package management system in addition

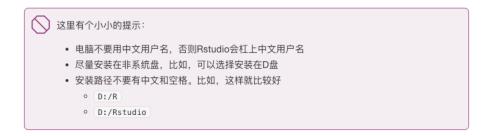
安装 RStudio

安装完 R, 还需要安装 RStudio。有同学可能要问 R 与 RStudio 是什么关 系呢? 打个比方吧, R 就像汽车的发动机, RStudio 就是汽车的仪表盘。但 我更觉得 R 是有趣的灵魂, 而 Rstudio 是好看的皮囊。

R: Engine

RStudio: Dashboard

同样,我们从官方网站下载并安装,如果你是苹果系统的用户,选择苹果系统对应的 rstudio 版本即可。


- $\bullet \ \ https://www.rstudio.com/download$
- 选择 RStudio Desktop

Installers for Supported Platforms

Installers	Size	Date	MD5
RStudio 1.1.456 - Windows Vista/7/8/10	85.8 MB	2018-07-19	24ca3fe0dad8187aabd4bfbb9dc2b5ad
RStudio 1.1.456 - Mac OS X 10.6+ (64-bit)	74.5 MB	2018-07-19	4fc4f4f70845b142bf96dc1a5b1dc556
RStudio 1.1.456 - Ubuntu 12.04-15.10/Debian 8 (32-bit)	89.3 MB	2018-07-19	3493f9d5839e3a3d697f40b7bb1ce961
RStudio 1.1.456 - Ubuntu 12.04-15.10/Debian 8 (64-bit)	97.4 MB	2018-07-19	863ae806120358fa0146e4d14cd75be4
RStudio 1.1.456 - Ubuntu 16.04+/Debian 9+ (64-bit)	64.9 MB	2018-07-19	d96e63548c2add890bac633bdb883f32
RStudio 1.1.456 - Fedora 19+/RedHat 7+/openSUSE 13.1+ (32-bit)	88.1 MB	2018-07-19	1df56c7cd80e2634f8a9fdd11ca1fb2d
RStudio 1.1.456 - Fedora 19+/RedHat 7+/openSUSE 13.1+ (64-bit)	90.6 MB	2018-07-19	5e77094a88fdbddddddb0d35708752462

Zip/Tarballs

Zip/tar archives	Size	Date	MD5
RStudio 1.1.456 - Windows Vista/7/8/10	122.9 MB	2018-07-19	659d6bfe716d8c97acbe501270d89fa3
RStudio 1.1.456 - Ubuntu 12.04-15.10/Debian 8 (32-bit)	90 MB	2018-07-19	63117c159deca4d01221a8069bd45373
RStudio 1.1.456 - Ubuntu 12.04-15.10/Debian 8 (64-bit)	98.3 MB	2018-07-19	c53c32a71a400c6571e36c573f83dfde
RStudio 1.1.456 - Fedora 19+/RedHat 7+/openSUSE 13.1+ (32-bit)	88.8 MB	2018-07-19	f4ba2509fb00e30c91414c6821f1c85f
RStudio 1.1.456 - Fedora 19+/RedHat 7+/openSUSE 13.1+ (64-bit)	91.4 MB	2018-07-19	c60db6467421aa86c772227da0945a13

可能的问题

• 问题 1: 如果下载速度太慢,可以选择国内镜像,

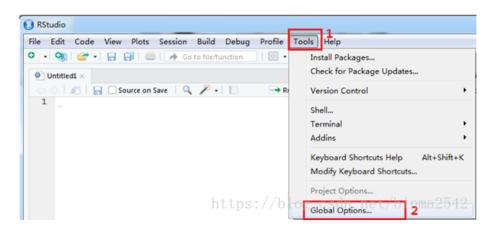


图 5: 选择国内镜像 1

然后再输入命令 install.packages("tidyverse"),或者直接指定清华大学镜像

install.packages("tidyverse", repos = "http://mirrors.tuna.tsinghua.edu.cn/CRAN")

• 问题 2: 如果遇到如下报错信息

Warning in install.packages :

unable to access index for repository http://cran.rstudio.com/src/contrib:cannot open URL 'http://cran.rstudio.com/src/contrib/PACKAGES'

输入下面命令后, 再试试

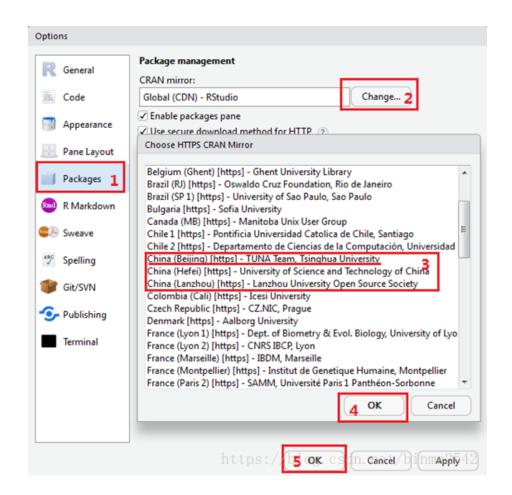


图 6: 选择国内镜像 2

options(download.file.method="libcurl")

或者打开 D:\R\etc\Rprofile.site, 添加以下内容:

local({r <- getOption("repos")
 r["CRAN"] <- "http://mirrors.tuna.tsinghua.edu.cn/CRAN"
 options(repos=r)})</pre>

options(download.file.method="libcurl")

• 问题 3: 如果打开代码是乱码,可以试试修改如下设置

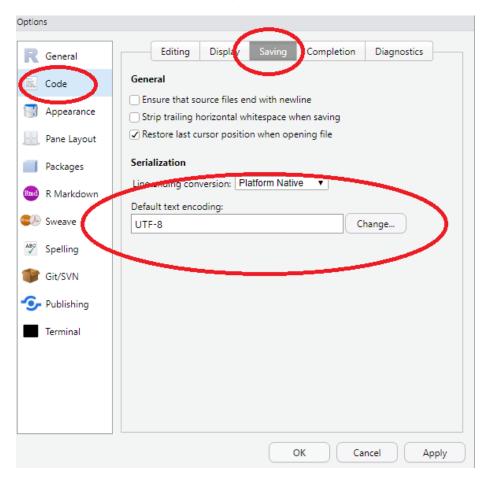


图 7: 代码是乱码

• 问题 4: 如果每次打开 Rstudio 非常慢,可以在 Rstudio 里将这几个 选项取消

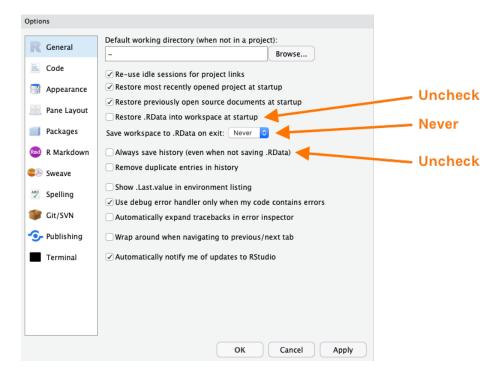


图 8: 打开 Rstudio 非常慢

• 问题 5: 如果 Rstudio 打开是空白

很大的可能是你的电脑用户名是中文的, 修改用户名再试试

• 问题 6: 安装过程中提示, 我的系统不能兼容 64 位的 Rstudio。

可能你是低版本的 windows 系统,建议安装旧版本的 Rstudio,可以在这里找到旧版本.

更多 Rstudio 的使用,可参考这里introducing-the-rstudio。

如何获取帮助

• 记住和学习所有的函数几乎是不可能的

• 打开函数的帮助页面 (Rstudio 右下面板的 Help 选项卡)

?sqrt
?gather
?spread
?ggplot2
?scale
?map_dfr

比如:

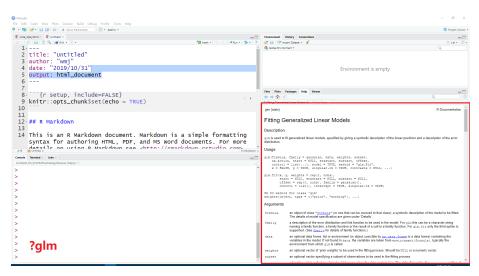


图 9: help 帮助

R 语言社区

R 语言社区非常友好,可以在这里找到你问题的答案

- twitter: https://twitter.com/
- R-Bloggers: https://www.r-bloggers.com/
- kaggle: https://www.kaggle.com/
- stackoverflow: https://stackoverflow.com/questions/tagged/r
- rstudio: https://community.rstudio.com/