Stochastic Modeling for Two-Stage and Multivariate

Degradation Processes

DR

ERIMTARZE
Email: yctang@stat.ecnu.edu.cn

BfFE: BRRR ITT ERR

BT (ECNU)

Stochastic degradation modeling



Outline

o Introduction

#ER7 (ECN Stochastic degradation modeling 2/132



Introduction

Failure data
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Figure 1: Types of failure data.
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Introduction

Accelerated life testing
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Introduction

Degradation data

@ In modern society, many products are designed with high reliability, and failure data
are hard to collected for these products, even using accelerated life testing.

@ Degradation data provide a useful resource for obtaining reliability information for
highly reliable products.

Loss of light output from an LED array

Power output decrease of photovoltaic arrays
Corrosion in a pipeline

Vibration from a worn bearing in a wind turbine
Loss of gloss and colour of an automobile finish

© 6 6 o o o
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Introduction

@ Let Y (t) be the degradation process of the performance characteristic (PC), and w be
the failure threshold level.

@ Define that the lifetime of product 7' = inf{t : Y'(¢) > w}.

Degradation models

@ General degradation path models
Y (t) = D(t|3,b) + €.

@ Stochastic degradation models, i.e., Wiener process (Liao and Tseng, 2006), gamma
process (Park and Padgett, 2005), inverse Gaussian process (Wang and Xu, 2010),
exponential dispersion process (Zhou and Xu, 2019), variance gamma, Ornstein—
Uhlenbeck, etc.

@ Two review papers: Ye and Xie (2015), Zhang et al. (2018).
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Two-phase degradation model
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Motivated

Figure 3: Degradation paths of OLEDs: luminosity against time (top) and luminosity

Two-phase degradation model

Wiener model

example: OLED degradation data
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Related Literature

@ Tseng et al. (1995) to analyze the two-phase degradation data tend to delete early
degradation measurements.

@ Bae and Kvam (2006) introduces a change-point regression model to fit degradation
paths.

@ A bi-exponential model with random-coefficients is proposed in Bae et al. (2008) and
compared with a exponential model.

@ Bae et al. (2015) adopt a Bayesian approach to model the two-phase degradation by
using a change-point regression model under the continuity constraint.

@ With the prior information taken into account, the bi-exponential model is
reestablished in Yuan et al. (2016) under the Bayesian framework.
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Two-phase degradation model Wiener model

Why Wiener Process and Measurement Error?

@ From the physical point of view, for many products, the degradation increment in an
infinitesimal time interval can be viewed as an additive superposition of a large number

of small external effects.
@ See Wang (2010) studies Wiener process with random effects for degradation data.

@ The objective Bayesian method is developed for the accelerated degradation test based
on Wiener process in Guan et al. (2016).
@ Ye et al. (2013) incorporate the measurement error in the Wiener process on account

of the imperfect inspection.
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Two-phase degradation model Wiener model

Motivation

@ This study is mainly motivated by the two-phase degradation data of the OLEDs with
the luminosity (or brightness) as the critical characteristics.

@ The OLED:s initially decrease rapidly and after some time points the degradation
processes become stable. Thus this inspires us to introduce the change-point in our
model to present the time point of the transition between two phases.

Contributions

@ We propose a change-point Wiener process with measurement error (CPWPME)
through specifying the drift of the Wiener process as a two-phase linear function of
time.

@ Besides, the variability of the degradation paths for different OLEDs drives us to
consider the unit-specific coefficients and change-points in the drift function.
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Two-phase degradation model Wiener model

Wiener process

Definition of Wiener process

@ W (t): the observed degradation character at ¢
@ Y (t) = W(0) — W(t): degradation value at ¢

@ A well-adopted form of the Wiener process is written as
X(t) = m(t) + oB(2), (1)

where m(t) is the drift, o is the diffusion coefficient, and B(t) is the standard
Brownian motion with properties: i) B(0) = 0; ii) B(t),¢ > 0, has stationary
independent Gaussian increments, i.e. AB = B(t + At) — B(t) follows a normal
distribution A/ (0, At).
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Two-phase degradation model Wiener model

Two-phase Wiener degradation process

Drift function of ith unit
The drift function of ith unit, ¢ = 1,...,n, where n is the number of units,

m;(t; BE, B, ;) is formulated as

BH¢, if t <7

o BL(t —7;) + BHr, ift> T,

()

where 3/ is the higher degradation rate at the early stage, 37 is the lower
degradation rate at the stable stage, and 7; is the change-point for the ith

individual unit. )
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Two-phase degradation model Wiener model

Notation

@ t; = (ti1,-..,tin,;): the ordered inspection time points for the ith unit.

@ y; = (Yi1,---,Yin;) : the corresponding observed degradations of
Y=Yt -, Yin).

@ n;: the number of inspection time points.

@ n: number of unit.

0 X;;=X(ti;)

® Ay; ;i = (Yij+1 — ¥i;): the observed degradation increment of AY; ; = (V; 11 — Yi ;)
on the time interval (t; ;,t; ;).

@ Aty =tiji1—ti.

Proposed model: CPWPME

Yi5 = Xog + € g (3)

where ¢; ; is the measurement error and follows A/(0, v?).

#ER7T (ECNU) Stochastic degradation modeling
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Statistical Properties of AY] ;

Expectation

BEAt; 5, if 73 >t 41,
Ami; = BE(Ti —ti5) + BE (g1 — 7o), i iy <7 <ty
,BiLAti’j, if T < ti,ja

Covariance between AY; , and AYj

o?Ati1 +92, ifk=g=1,
oAt +292, ifk=g>1,
cov(AY; 4, AY; ) = kY g

-2, ifk=g+lorg="Fk+1,

0, otherwise,

where k,g=1,...,n; — 1.
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Two-phase degradation model Wiener model

Joint probability density function (PDF) of AY;

@ Am; = (Am;1,...,Am;,,—1): the mean vector.

@ X;: the covariance matrix with the (k, g)th element given by cov(AY; 4, AY; ;) for the
ith degradation increment vector.

o AK = (AY;'J ceey AY;"nifl).

Joint PDF of AY;

(Ayi — Amy)TE Ay — Ami)]

xSy = @n) 5l e | 2

where Ay; = {Ayi1...,Ayin,—1} is the ith observed degradation increment

vector.
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Two-phase degradation model Wiener model

Likelihood Function

o B = (B ..., BH): the higher degradation rate parameter vector.
o Bt = (BE,...,BL): the lower degradation rate parameter vector.
@ 7 =(71,...,7s): the change-point parameter vector.

o (BH,BL, 7,02, ~%): aset of all the parameters in the CPWPME model.

Likelihood function of (B, 8%, 7,02, +?)

L(B", 8", 1,0%,7°)
R & P N (Ay; — Amy) TS (Ay; — Amy) (4)
—E(2W) |2 72 exp 5 -
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Two-phase degradation model Wiener model

Prior Specification

©Q A truncated trivariate normal distribution is assigned for n;, fori =1,...,n, i.e.
ni = (B, BF, 7)) ~ MYN(w, 0T gm0, pr0, ri>0,) Where w is the mean vector
and  is the covariance matrix, and Zygn oo gLq, 7,<0,} iS the indicator function.

© The conjugate prior for w is also a trivariate normal distribution MVN (k, ¥). Let the
mean vector k = 03 and the covariance matrix ¥ = 107615, where 03 is a three
dimensional zero vector and Is is a 3 x 3 identity matrix.

© Decompose the Q) as Q2 = ©QO, where © = diag{61,02,05}. Assign the
inverse-Wishart distribution ZW(p, S) for ). Specify the Gamma distribution
G(ag,bg) as the prior distribution of 8y for k =1,2,3. Let p =4, S = I3, and
ag = 0.0001, by = 0.0001.

@ The inverse Gamma distributions ZG(a,, b, ) and ZG(a-, b-) are assigned for o2 and
v Oy g

72 respectively. Let a, = b, = a, = b, = 0.001.

HR7T (ECNU) Stochastic degradation modeling 18 /132



Two-phase degradation model Wiener model

Posterior Inference

@ Define all the parameters vector as 8 = (11, ..., M, 02,72, Q, 01,02, 03).

Joint posterior distribution of @

m(8ly) cL(B", 8%, T,0%, %) lH 7 (1w, Q)] m(wlk, ¥)m(Qlp, S)

(5)

X [H W(Hklak,bk)] 7(0%]ag, bo)m (7% ay, by)

k=1
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Two-phase degradation model Wiener model

Failure-time

@ The OLED devices are regarded to have failed if their luminosity fall below 50% of
their initial luminosity.

@ Define the 50% of six OLEDs' initial luminosity as a vector (Fi,...,Fs).

@ Failure-time of the ith testing unit is defined as T; = inf{t|Y (¢t) < F;}, where F; is
the failure threshold of ith device.

Cumulative distribution function (CDF) of the failure-time

F( FIG(tag;-liﬁ-Z_g)? IftST“ ()
7,(t) =  _(gHL : _(BH _ : 6
Frg (t Bl FoBlophnl) iy >

fori=1,...,N. Here, Fig(z;pu, \) denotes an inverse Gaussian (IG)
distribution with mean vector ;1 and shape parameter \.
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Mean time to failure (MTTF)

MTTF of each OLED device

Fi PR R Fi — (B — B
e =pm |1 = Fi <T~ﬂH2;ﬁ~H"72>]+ (BﬂL -
7 [F: — (B = 8H)nl? Fi — (B = BH)7m [Fi— (BF = BP)m)?
X IFra T-/B.Lz ) /BlL ) 0_2 )

fori=1,...,N.
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Simulation Study

©Q The CPWPME data are randomly generated under the following three different setup
for the number of units and the number of inspection time points, i.e
Scenario I: n =5, n; = 16;
Scenario Il: n =5, n; = 21;
Scenario lll: n =10, n; = 21.
© The inspection time points are chosen from 0 to 18 with identical time intervals under
each scenario.
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Simulation Study

@ Degradation increments are generated by sampling from a multivariate normal
distribution.

@ For parameter estimation, we apply the hierarchical Bayesian method. We initiate with
a 15,000-iteration burn-in period, using the coda package in R for convergence
diagnostics via trace, ergodic mean, autocorrelation plots, and the Gelman-Rubin ratio.

@ An additional 10,000 iterations generate posterior samples for parameter inference,

estimating each parameter by the posterior mean.

@ This simulation and estimation cycle is repeated 500 times for each data configuration.

HR7T (ECNU) Stochastic degradation modeling 23 /132



Two-phase degradation model Wiener model

Table 1: Parameter estimation results from the HB approach and the ML method for
scenario |.

stat. pf s s s BT BE B By BE B
True 6.720 7.082 6.626 7.713 7.147 1.741 2.154 2.233 2.182 1.903
Bias 0.142 0.017 0.177 -0.259 -0.030 0.223 -0.061 -0.096 -0.122 0.128
SE 0318 0.312 0341 0.398 0.325 0.465 0.430 0.416 0.422 0.480
RMSE 0.348 0312 0.384 0.474 0.326 0.516 0.434 0.427 0.439 0.496

CP 0928 0.990 0.910 0.876 0.960 0.960 0.984 0.968 0.960 0.966
2

Stat. 7 T T3 T4 s w1 w2 wB] e v
True 12.828 12.214 11.660 10.787 12.616 7.000 2.000 12.000 2.000 1.000
Bias -0.284 -0.085 0.074 0.291 -0.209 0.067 0.057 -0.021 0.048 0.185
SE  0.490 0.413 0.523 0.405 0.463 0.202 0.320 0.257 0.704 0.487
RMSE 0.566 0.422 0.527 0.498 0.508 0.213 0.324 0.257 0.705 0.520
CP 0924 0966 0.972 0.940 0.940 0.994 0.996 1.000 0.974 0.970
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Two-phase degradation model Wiener model

Table 2: Parameter estimation results from the HB approach and the ML method for
scenario Il.

stat. pf s s s BT BE B By BE B
True 6.720 7.082 6.626 7.713 7.147 1.741 2.154 2.233 2.182 1.903
Bias 0.149 -0.007 0.193 -0.297 -0.024 0.239 -0.034 -0.120 -0.136 0.119
SE 0320 0.204 0325 0.373 0.276 0.463 0.431 0.410 0.417 0.412
RMSE 0353 0.294 0.378 0.477 0.276 0.521 0.432 0.427 0.438 0.429

CP 0934 0972 0.924 0.884 0.986 0.946 0.974 0.972 0.974 0.986
2

Stat. 7 T T3 T4 s w1 w2 wB] e v
True 12.828 12.214 11.660 10.787 12.616 7.000 2.000 12.000 2.000 1.000
Bias -0.292 -0.052 0.069 0.331 -0.155 0.060 0.057 0.002 0.159 0.085
SE  0.432 0.403 0.448 0.450 0.347 0.191 0.303 0.221 0.717 0.393
RMSE 0.521 0.406 0.453 0.559 0.379 0.200 0.308 0.221 0.733 0.402
CP 0930 0974 0.970 0.918 0.970 1.000 1.000 0.998 0.944 0.960
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Two-phase degradation model Wiener model

Table 3: Parameter estimation results for scenario Ill.

S
True 6.720 7.082 6.626 7.713 7.147 6.633 7.218 7.330 7.257 6.863
Bias 0.179 -0.022 0.259 -0.362 -0.064 0.249 -0.094 -0.152 -0.113 0.109

SE 0.255 0.227 0.248 0.308 0.219 0.245 0.233 0.251 0.246 0.226

RMSE 0.311 0.228 0.358 0.475 0.228 0.349 0.251 0.294 0.270 0.250
CcpP 0.908 0.978 0.894 0.814 0.980 0.890 0.978 0.946 0.966 0.976
Stat. B By B8 Bt B B BY B¢ By Bl
True 2.478 2123 1.804 1.300 2.356 1.986 1.995 2.298 2.260 2.188
Bias -0.174 0.031 0.195 0.347 -0.108 0.077 0.052 -0.162 -0.125 -0.038

SE 0.378 0.360 0.331 0.433 0.331 0.322 0.303 0.343 0.349 0.326

RMSE 0.416 0.361 0.384 0.555 0.348 0.331 0.307 0.379 0.371 0.328
CcpP 0.952 0.984 0.960 0.878 0.990 0.986 0.990 0.972 0.976 0.990
Stat. T T2 T3 T4 T5 T6 7 T8 9 T10
True 12.503 12.428 12.041 10.910 12.339 11.969 11.915 11.194 11.738 12.229
Bias -0.220 -0.199 -0.129 0.272 -0.128 -0.078 -0.012 0.329 0.093 -0.141
SE 0.369 0.311 0.331 0.349 0.331 0.327 0.292 0.358 0.286 0.345

RMSE 0.430 0.369 0.355 0.442 0.355 0.336 0.292 0.486 0.301 0.372
CcP 0.930 0.946 0.970 0.894 0.962 0.968 0.992 0.858 0.980 0.960
Stat. w(1] wl[2] w([3] o? ¥?

True 7.000 2.000 12.000 2.000 1.000
Bias 0.058 0.088 -0.094 0.063 0.041
SE 0.135 0.206 0.159 0.517 0.290

RMSE 0.147 0.224 0.185 0.520 0.293

CcP 0.992 0.986 0.996 0.952 0.956
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Simulation Study

©Q Our model and method despite the small sample size and large number of parameters.

@ Results from Scenario Il show no significant reduction in absolute bias with increased
n;, but SE and RMSE decrease notably compared to Scenario |, achieving better
nominal coverage probability.

@ For Scenarios Il and Ill, increases in n do not substantially reduce absolute bias due to
a corresponding rise in unknown parameters, yet the hierarchical Bayesian method

remains effective even with small sample sizes.
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OLED data analysis

@ The OLED degradation data was modeled using the CPWPME approach, with
parameter estimation conducted via hierarchical methods.

@ The Markov chains were initiated with a 20,000 iteration burn-in period, followed by
an additional 30,000 iterations to obtain posterior samples for inference.

@ Estimation results for the CPWPME model are summarized in Table 4. The estimated
posterior means for w and the covariance matrix €2 are given by:

& = (3.76,9.74,4.36)
0.16350  0.00353  —0.00368

Q=1 000353 0.22370 —0.00108
—0.00368 —0.00108 0.09092
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Two-phase degradation model Wiener model

Table 4: Parameter estimation based on the CPWP model.

OLED BH Br
Est. SE 25% 97.5% Est. SE  25% 97.5%
#1 3.665 0.224 3.204 4.100 9.800 0.302 9.217 10.440
#2 3.653 0230 3.177 4.099 9.557 0.331 8.821 10.120
#3 3.607 0222 3.243 4.143 9.819 0294 9271 10.460
44 3.806 0215 3.404 4.261 9.635 0.295 8.992 10.170
#5 3775 0230 3.323  4.250 9.808 0.290 9.251 10.420
#6 3932 0256 3.503 4.488 9.802 0.285 9.234 10.400
T
Est. SE  25% 97.5%
#1 4475 0131 4210 4.749
#2 4482 0144 4218 4.802
#3 4364 0124 4101 4.586
44 4425 0121 4193 4673
#5 4165 0152 3.872 4.447
#6 4266 0129 4013 4.506
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Two-phase degradation model Wiener model

Models comparison

Benchmark models
@ CPWP: The CPWP model is similar to our CPWPME model but omits measurement

error.

@ TPLCP: y; ; = Gtog = itig + g J=1oo% for the ith item data,
Gitij —RiSi +€ij,  J=%+1L...,n
where y; ; is the jth observation measured at time t; ;, and g; € [t4,,t,,41) is the
change-point of ith item. The error ¢; ; are assumed to be i.i.d. N'(0,v?).
© BE: y;; = ¢iexp(— (v + Avi)ti;) + (1 — ¢i) exp(—iti ;) + €,; where
i=1,...,0,j=1,...,n;, and error ¢, ; are assumed to be i.i.d N'(0,w?). Denote

d=(d1,...,00)T, y=(71,-..,7)7, and Ay = (Avyq, ..., Ay)T.
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Two-phase degradation model Wiener model

Table 5: Parameter estimation of defferent benchmark models.

OLED  CPWP Model TPLCP Model BE Model

gH Bt~ ¢ S ¢ v Ay
41 3.799 9.269 4.373 -8.947 -5.440 4506 0.647 4.741 -4.681
42 3797 9.300 4.369 -9.144 -5.640 4.486 0.647 4.741 -4.680
#3  3.815 9.305 4.310 -9.088 -5.560 4.256 0.634 4.742 -4.679
44 3.849 9.334 4364 -9.445 5555 4.439 0.622 4.743 -4.678
45  3.850 9.429 4210 -9.670 -5.936 4.025 0.609 4.745 -4.676
46  3.903 9.407 4.287 -9.819 -5.654 4.215 0.596 4.745 -4.676
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Two-phase degradation model Wiener model

CPWPME CPWP
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Figure 4: The posterior degradation path fits; luminosity vs. log(time) for each OLED data.
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Two-phase degradation model Wiener model

Mean square prediction error (MSPE)

MSPE =~ (yi; — 9i)° . (7)

J=1

where y; = {¥i1,...,¥Yin, },4 =7, is the degradation data of the 7th unit and

Yi = {¥i1,---,Uin,} is the corresponding prediction value.

Table 6: MSPE for the 7th OLED degradation path.

Model CPWPME CPWP TPLCP BE

MSPE 360.04 406.04 436.29 678.53

@ The CPWPME model's MSPE is much smaller than that of three other models,
indicating its superiority.
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Two-phase degradation model Wiener model

1.00 4 e —
; . -
/
0.75 4 A
2z
3 — OLED #1
§ OLED #2
& 0504 - OLED #3
S - |OLED #4
E OLED#5
= - OLED#6
w
0.25
/’/
; - ///
0.004 A
i i i i
0 200 400 600

log(Time)

Figure 5: Posterior distribution of the failure-time for each OLED.

@ The MTTF estimates for each unit are (352.28,267.84,201.25,180.67, 139.88,125.77).
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example: lithium batteries
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Figure 6: Capacity degradation data of lithium batteries.
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Two-phase degradation model Inverse Gaussian model

Related Literature

Two-phase degradation modeling

@ Wiener process: Wang et al. (2018a, 2018b), Zhang et al. (2019), Lin et al. (2021),
Ma et al. (2023), etc.

©Q Gamma process: Ling et al. (2019), Lin et al. (2021).

© G process: Duan and Wang (2017).
o Limitations of Duan and Wang (2017):

(i) Constraints on locations of change points;

(i) Insufficient considerations for deriving the lifetime distribution;

(i) Neglecting the uncertainty in estimation.
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Two-phase degradation model Inverse Gaussian model
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Two-phase degradation model Inverse Gaussian model

Contributions

(i) A novel two-phase reparameterized |G (rlG) degradation model with distinct change
points and model parameters for each individual system;

(i1) Derive the distribution of failure time and remaining useful life (RUL), and propose an
adaptive replacement policy;

(iii) Employ bootstrap and Bayesian approach to generate interval estimates for the
parameters.
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Two-phase degradation model Inverse Gaussian model

Reparameterized |G distribution

Connection to |G distribution
The rlG distribution 7IG(0, ) relates to the traditional IG distribution
IG(a,b) as a = §/v and b = §°.

Moment generating function (MGF)

My (t) = B(e) = (V1 F). (8)

Additive property
If}fl ~ TIG((SlafY) 7Y'2 ~rlG (5277)1 then }/1 +}/2 ~ T.IG((SI +627ry) :

BT (ECNU) Stochastic degradation modeling




Two-phase degradation model Inverse Gaussian model

If a random variable Y follows rlG distribution, then its PDF is

fric(yld,~) = %6%_3/26_(5@47@)/2’ y>0,6>0,7v>0 (9
s

Fualdn) =@ [Vin— =] + e |~y - 22|, (o

where ®(-) is the CDF of the standard normal distribution.
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Two-phase degradation model Inverse Gaussian model

rlG process

Definition of rlG process

rlG process {Z(t),t > 0} satisfies the following properties:
(1) Z(0) = 0 with probability one;

(1) Z(t) has independent increments. Specifically, Z (t2) — Z (t1) and Z (s2) — Z (s1) are
independent for all t5 > t1 > s9 > 51 > 0;

(i) Forall t > s >0, Z(t) — Z(s) follows the rlG distribution 7IG (5(A(t) — A(s)),7),
where A(t) is a monotone increasing function with A(0) =0, 6 and « are unknown

parameters.

@ Denoted as rZG (6A(t), ).
@ The mean and variance of {Z(t),t > 0}, which are §A(t)/~ and §A(t)/~3, respectively.
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Two-phase rlG degradation model

Two-phase rlG degradation model

Suppose a system'’s performance characteristic degrades in two distinct
phases, separated by a single change point.

Y ()| ~ rZG (m(t;61,02,7),7), T~ N (pir, 02),
5t t<r 11
m(t; 01,02, 7) = ' =7 ()
52(t—T)+51T, t>T,

where 01 and J9 are the drift parameters for ¢ < 7 and ¢ > 7, respectively.

HER7T (ECNU)
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Failure-time

Yi(t), t<,

LetT:inf{t|Y(t)ZD}, and Y(t):{ Yl(T)—i-YQ(t—T) t> T

Conditional reliability function of T’
00<t<rt

Fit| 1) =P(T >t|7>t)=PYi(t) <D|7>t) = Fz6(D|61t,7). (12)
Qt>T
FBt|n)=PYt)<D|r<t)=PMi(1)+Yat—7)<D|T<1)

(13)

D
_ / Frzg(D = ye|0a(t — 7),79) f1(y+ | 7)dyr,

where y, represents the degradation value at 7, and fi1(y, | 7) is the PDF of y..
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Failure-time

Unconditional reliability function of T’

Rt)=PY({t)<D,7>t)+ P(Y(t) <D,0< 7<)
i i} ‘ _ (14)
— R (t| 1) Gr(t) + / 92 (7ljtr, 02) Fy (¢ | 7) di,

where G, (t) is the survival function of random variable 7.

MTTF = E(T) = / h R(t)dt. (15)
0

w
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RUL

Let Sy =inf{z;Y (t+2) >D|Y(t) < D}.
Conditional reliability function of S}
(i) When z +t < 7

Fs,1(z | 7) = Frzg(D = Y (£)|612, 7). (16)
(ii) Whent <1t <z +t:

Fg,ox|7)=PY(t+2)<D|Y(t) <D)
D (17)

_ / Fozg(D — yolda(t + 3 — 7),79) fi (yr | 7)dys-

(iii) When 7 < ¢:

Fs,3(x | 7) = Frzg(D — Y ()|022, 7). (18)
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Unconditional reliability function of S;

Rs, () =PY(t+2z)<D,t<z+t<rT)
+PY(t+z)<Dit<t<z+t)+PY(t+z) <D,t>1)

- - o - 19
—Fon (z|7) Crlz ) + / 9 (lttr, 02)Fs, 2 (| 7) dr (19)
t

t
—|—/ 9-(T)Fs, 3 (x| 7)dr.
0

Mean of RUL at time ¢

MRL = E(S;) = /000 Rg,(x)dz.
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@ [ systems under inspection in a degradation test.
@ Deterioration pattern follows the two-phase rlG degradation model.

@ Y; ; is the observed degradation value at the measurement time ¢; ;,
i=1...,I, j=1,...,n,, and 0<t1‘71 <<ty

0 Let Ay; ;=Y;; —Yij—1, Yio=0.

® Denote AY; = (Ay1,...,Ayin,) , AY = (AY;",---,AY;") "
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Conditional PDF of Ay; ;

Ay, j ~rIG (Amﬁ,’? (61,i5 62,1, Ti) ,7) ;

(517¢Ati7j k=1,
(k) _
Ami,j (016,026, Ti) = § (815 — 024) Ti + 02,itij — 014itij—1, k=2,
02,i A 5, k=3,
Atiyj :ti,j _ti,j—l and ti70 =0,1= 1...,[, ] = 1,...,ni.
*) Am® = (81— 6a2) 7 + Gaitigen — v, Am®) = 5, .At; ;
Am® = 5,8t iy = (014 = 82,3) Tu + S itigr — Suitiy m; 2,i A
5 g 5
5 < =
® g ®
3 ) g
tio by oT tijo1 T tij T i by
Time Time Time
(@) 72>t (b) tij—1 < T <t (¢) 7 <tij—1

Figure 7: Three scenarios for change points and inspection time.
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Conditional PDF of Ay; ;

Let )\571]) = I(Tz > ti,j) , )\5’2]) = I(ti’j_l <7< ti,j) , )\573]) = I(Tl < ti7j_1).

(1) (2) (3)
A (813,025, 75) =Am) (815, 82,4, 7)™ % Am) (81,4, 02,, )7 % Am®) (81,4, 62,0, 7) 7 .

Amg j (01,4,024,Ti)
\ 2T
{ [Am; ; (01,4, 024, 7)) Ayz’_,jl + V2 Ay; ; }
X exp 4 — :

€xp {VAmz',j (5172‘, 52,2', Tz)} Ay._fo’/Q

J

fi,j (Ayz,] | 61,i7 62,i77—i7 7) -

2
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@ Let 61 = (6171, A ,(517])1—, 62 = ((5271, A ,(5271)T and 7 = (7'1, . ,T[)T.
T sT )" 2\ T T ,T\T

@ Denote n = (8/,0;,7) , 0, = (ur,02) and ¥ = (8],n")

@ Given the observed data AY, the likelihood function is

oo M

Lon(AY]9) = H / TL s (B0 s b getrloan (21)

Remark: Obtain a closed-form solution for the ML estimates of 1 is not feasible.
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EM Algorithm

Log-likelihood function for the complete data
L(AY, 7[9) = Z i(67) + ZZl J(m,7), (22)

o=l =il gi=1

2
l;(0:) =logg, (1, | 0;) = —logV2mo, — %,

T

lij(m,7)=log fij (Ayi; | n,T)

3 A”’T’Zl2 y 2A i >
= —log V2m + log Am; ; + yAm; ; — 3 log Ay; ; — 2Ayl’J' 1 2y L
irj

and Amm = Ami,j (51,2'; 52,i77-i)'
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@ E-step:

Qs (9) = Eﬂ( y [L(AY, 7]9)]

(23)
_ZE,B() |AY+ZZE19() 1]777 )|AY]7
=1 j=1
@ M-step:
V(s41) = argmax Q (). (24)
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@ Step 1. Initialize the parameters 1 to some random values ¥(g), and setting the
tolerance error .

@ Step 2. Calculate Ey  [I; (07) | Ay] and Ey  [li j(n, T) | Ay] based on the
solution of the s-th iteration 9.

@ Step 3. Calculate the solution of the (s + 1)-th iteration ¥(,;1) by (24).

@ Step 4. Repeat Steps 2 and 3 until |19(s+1) — 19(3)| < €, where | - | is the Euclidean
distance.

@ Step 5. The MLE of 9 can be obtained as 9= D (s41)-
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Parametric bootstrap method

Algorithm 1: Parametric bootstrap algorithm.

Input: Point estimate 9.
Output: B bootstrap estimates {19{, ceey 19*8}4
1 for b=1to Bdo
2 | Generate T from N (i, 52);
3 for i=1toIdo
4 for j=1ton; do
5 Generate degradation sample AY;; from
rIG (Amﬁf;? (81,,-,82,1-@-) ,ﬁ) k=1,2,3.
6 end

7 end

8 Obtain 'z§§ based on AY using the proposed EM algorithm.

9 end
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Parametric bootstrap method

After acquiring the bootstrap estimates {19’{, e ﬁg} an approximate

100(1 — «)% bootstrap confidence interval for a function of the parameters

h(¥) is:
lh (é*)(aB/Q) X (é*)((l—aﬂ)l’ﬁ’)] ’

where h (ﬁ*)(b) denotes the b-th statistic among {h (19*)1 N ) (3*)6}.
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Bayesian analysis

}/;,(t|7-z) ~ TIg (m(ta 61,2'762,1'77-2')77) y Ti ™ N (MT?OE) ) 1= 17 cee 717
01,it, t<m,

m(t; 014,024, 7;) =
v 0o (t — 1) + 01,7, t> T,

(MT7 O’E) ~ NIGa (ﬁTanTvaa€T> e N(UJ, ’12%
5172’ ~ N (,Ml, O_%) 752,i ~ N (,Uf27 0%)7
(11,07) ~ NIGa (Br,m,v1,61) , (p2,03) ~ NIGa (B2, m2,v2, &),

where N1Ga(-) denotes the normal-inverse gamma distribution.
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Joint posterior distribution of 8

.
© Let 0 = (9, 1,07, 12,0%)  be the parameter vector.

@ According to Bayes' theorem, the joint posterior distribution of @ can be derived as

(0| AY) o< (pr, 02) 7 (1, 01) 7 (2, 03) w (v | w, k) 7 (7 | pr, 02)

25
X T (61 | ul,af) T (52 | ul,af) fay (AY | 81,02, 7,7). ( )

@ Employ the Gibbs sampling algorithm to generate posterior samples of the
parameters, thereby facilitating Bayesian inference.
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Adaptive replacement policy

0 0=1t;0 <t;1 <--- <ty are discrete inspection times.
@ y; ; represents the observed degradation value, y; 1.5 = {vi1,Yi2,---, i, }-

@ lteratively update estimations of model parameters and RUL distributions,
fs.(@|yi1:5)-

@ Evaluate candidate maintenance actions at each inspection time point.

@ Determine optimal preparation and maintenance actions as data continues to be
collected.

#ER7T (ECNU) Stochastic degradation modeling 58 /132



Two-phase degradation model Inverse Gaussian model

Policy assumption

@ Maintenance is executed perfectly by replacing the system spare parts.
@ Failure is detected only by inspections, and the cost of each inspection is ¢;.
@ An adequate supply of spare parts.

@ Maintenance preparation time w is usually required.

Two maintenance actions

At t; j, the decision maker has the option: replace the system or wait until the
next inspection.

@ Corrective replacement: implement if the system is found to have failed during the
inspection, incurring a corrective replacement cost denoted as c..

@ Preventive replacement: implement when it is expected that the system is nearing
the failure state, incurring a preventive replacement cost denoted as cp,.

#ER7T (ECNU) Stochastic degradation modeling 59 /132



Two-phase degradation model Inverse Gaussian model

Candidate replacement time at ¢; ;

Tui=tos g+ o+ i3] + 5
T =1 f € ¢ 2, o d
" %11 {/O T+t +w fsi(@lyi15)dz

+ /+°° pralliy o),

fS T\Yi1:5
_— (2]Yi15) T, :

where |¢| = max{h € Z | t;, <}, and ¢ is the downtime cost during the

preparation time after system failure.

Optimal preparation and replacement time

As the values of 7; ; are successively updated,
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Performance evaluation

@ Consider a set of I systems, each of which operates for a single cycle.

0 LetX; = min{ﬁ*,’ﬁf}, where T.* represents predicted optimal maintenance time, and

T represents actual failure time.

Actual cost rate of the i-th system
Cp + ¢ \_Xl — TDJ

_ I
CRi = ce + 6| Xi] + (27)
5 Xz - 7?:7
7? + @

Average cost rate for all systems
I

(28)

61/132
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Algorithm 3: RUL-based adaptive replacement policy.

Input: y,c.,c,, ¢, w, D, j.
Output: 1;*, CR;,i=1,...,1, and CR.
1 for i=1to I do

2 while no maintenance performed do
3 if the system is operational then
4 Collect new inspection data Y; ;;
5 Update model parameter estimates using Bayesian
methods in Section Section 3;
6 Compute RUL distribution {f s, (x1¥11: j)}::(’) using
(9
7 Determine 7; ; by (22), and find 7! by (23);
8 ift,; =7/ then
9 Inspection is completed, and preventive
maintenance at 7;*.
10 end
1 end
12 else
13 Corrective maintenance;
14 Set 7=t
15 end
16 j=j+1
17 end
18 Compute CR; by (24).
19 end

20 Compute CR by (25).
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Simulation study

Simulation settings
@ (I) I=5and n; =20; (II) I =5 and n; = 40; (Ill) I =8 and n; = 20.

@ Considering the heterogeneity, we generate 01,1, ...,01,7 from N(4,1), d21,...,02.1
from N(15,1), and 7q,...,7; from N(10,1).

@ For each scenario, we generate 500 samples to reduce the effects of randomness on the
results.

v
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Simulation study

@ Bayesian method:
o Flat priors: (ur,0,) ~ NIGa(8,100,0.01,0.01),
(p1,01) ~ NIGa(1,100,0.01,0.01), (p2,02) ~ NIGa(2,100,0.01,0.01), and
~v ~ N(5,100).

o Initiate a burn-in period comprising £ = 5000 iterations, and an additional
S — £ = 5000 iterations are conducted to obtain posterior samples.

@ ML method: the point estimates are calculated by the EM algorithm, corresponding
interval estimates are calculated by parametric bootstrap method with 5 = 500.

@ Indexes of assessing different methods: relative bias (RB), rooted mean squared
error (RMSE) and 95% coverage probability (CP).
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Parameter estimation performance of two methods

Table 7: Parameter estimation from Bayes and ML methods for two scenarios.

Scen. Meth. Stat. (51’1 01,2 01,3 (51’4 (51’5 (52)1 (52,2 02,3 5274 02,5 ¥
RB 0.024 0.029  -0.007 0.015 0.012 -0.026  0.019 0.023 0.056 0.003 0.011
Bayes  RMSE 1.326 1.363 1.357 1.332 1.330 0.422 0.424 0476 0.422 0431 0.168
| CcP 0.956 0.953 0.946 0.953 0.957 0.941 0.925 0.900 0.928 0.926  0.964
RB 0.057 0.039 0.040 0.057 0.050 0.065 0.071 0.057 0.078 0.060 0.057
MLE RMSE 1.315 1.381 1.302 1.401 1.508 0.641 0.645 0576 0.667 0.739  0.308
CP 0.889 0.922 0.878 0.900 0.833 0.922 0.922 0.900 0.889 0.867 0.811

Scen. Meth. Stat. 51,1 51,2 51,3 51,4 51,5 52,1 52,2 52,3 52,4 52,5 o
RB -0.005  0.007 0.023 0.011  -0.005 -0.019 0.000 0.016 0.000 0.012 0.001
Bayes RMSE 1.068 1.011 1.065 1.015 1.044 0.349 0.283 0.275 0.355 0.332 0.124
I CP 0.930 0.945 0.950 0.944 0.927 0.902 0.925 0.947 0.885 0.902 0.914
RB 0.036 0.035 0.017 0.032 0.039 0.029 0.041 0.036 0.025 0.042  0.039
MLE RMSE 0.944 1.010 0.880 0.900 0.985 0.331 0.358 0.323 0.328 0.346 0.150
CcP 0.905 0.890 0.905 0.920 0.900 0.895 0.890 0.930 0.930 0.920 0.865
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Model comparison in reliability estimation

@ Linear A(t) = t; Power A(t; ) = t*; Exponential A(t; o) = exp(at) — 1.

| 1l
1.54
1.29 1.25
111 112
w 4
7 1.0
=
14
0.5+
. 0.23 025 024
--
L Bayes Linlear PO\INEI' E>I<p Bayes Linlear PD\INEF E;(p
Method

Figure 8: Average RMSE of MTTF estimators based on various models.
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Change point estimation under real-time scenarios

Parameter © T1 e T o T3 o T 5
Bayes ML
[
304 . . .
L]
L]
§‘-\
o
— 254 °
0] : .
=
14
20
g L]
L2 [ . °
3 . . .
15- T T T T T T
20 30 40 20 30 40

Current time
Figure 9: Average RMSE of the change point estimates at three different time points.

HR7T (ECNU) Stochastic degradation modeling 67 /132



Two-phase degradation model Inverse Gaussian model

Parameter estimation

Table 8: Parameter estimation based on the proposed model.

HB ML | HB ML
B B T B B Br B T B B
2.5% 0.422 2.198 22.257 0.497 2.511 2.5% 0.467 1.993 24.151 0.561 2.120
# 1 Mean 0.532 2.516 23.187 0.510 2.632||# 4 Mean 0.583 2.291 25.008 0.576 2.221
97.5% 0.645 2.851 24.664 0.518 2.713 97.5% 0.703 2.595 26.060 0.587 2.288
2.5% 0.523 2.013 24.365 0.638 2.113 2.5% 0.495 2.162 23.184 0.624 2.382
4 2 Mean 0.653 2.312 25.336 0.658 2.215||# 5 Mean 0.621 2.472 24.003 0.642 2.496
97.5% 0.785 2.615 26.557 0.670 2.282 97.5% 0.752 2.809 25.370 0.654 2.572
25% 0.336 2.161 26.316 0.405 2.412 2.5% 0.464 2.130 24.722 0.559 2.324
43 Mean 0.428 2.487 26.761 0.414 2.531||# 6 Mean 0.577 2.443 25.583 0.574 2.440
97.5% 0.518 2.831 27.381 0.420 2.610 97.5% 0.697 2.769 26.306 0.585 2.517
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Table 9: RMSE and RB results for different models.

Training(30)  Prediciton (19) Overall
RMSE RB RMSE RB RMSE RB

Proposed 0.448 0.248 1538 0.060 1.020 0.175
Linear 3476 1.442 3685 0.156 3.558 0.943
Power 2.067 0.568 2.475 0.113 2229 0.391

Exp 0.908 0.313 1.611 0.065 1.230 0.217
Duan 0.434 0239 1976 0.075 1.276 0.175

Model
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Figure 10: Degradation path training and prediction results for battery #2 using different
methods, with a zoomed-in view of the potential change point locations.
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Figure 11: Reliability and density functions of failure time based on HB method.
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Figure 12: Reliability and density functions
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(b)
of RUL based on HB method.
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RUL-based adaptive maintenance policy

@ Cycles 1-30 as historical data, continuously acquiring new data over time.
Qci=2c = 600, ¢, = 200, and ¢, = 100.

© Maintenance preparation period is w = 1.

Benchmark policies

i) Classical replacement policy (CRP): preventive maintenance time is determined by
the system'’s mean time to failure 77

i) Ideal replacement policy (IRP): the assumption of perfect predicted failure time 7;7.
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Table 10: Candidate preparation time at consecutive data-acquire epochs.

Battery #2 Battery #3
Cycle(x300)

Real RUL  MRL 7y ‘ Real RUL  MRL 73
31 12 13.865 43 13 13.228 46
33 10 11.219 41 11 10.278 43
35 8 7.624 41 9 8.389 42
37 6 5.986 41 7 6.884 42
39 4 4.040 42 5 4.206 43
41 2 2.764 43 3 2.318 44
42 1 1.235 43 2 1.556 44
43 - - - 1 0.380 44

Optimal preparation times (42, 43); optimal replacement times (43, 44).
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Table 11: Maintenance cost rates for 6 batteries under the adaptive replacement policy.

TS Linear Power Exp

Batt FC
e 7 Action CR 77 Action CR 7T Action CR 7" Action CR

1 40 3vr P 735137 P 735140 P 6950 35 P 7.657
2 43 43 P 6605 42 P 6.714 - C 17909 40 P 6.950
3 44 44 P 6500 44 P 6.500 - C 17556 42 P 6.714
4 45 44 P 6500 43 P 6.605 - C 17217 41 P 6.829
5 41 40 P 6950 39 P 7.077 - C 18667 38 P 7211
6 42 42 P 6714 41 P 6.829 - C 18326 40 P 6.950
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Figure 13: Average cost rate for each policy.
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Outline

e Multivariate degradation model
@ Bivariate Wiener model
@ Multivariate inverse Gaussian model
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e Multivariate degradation model
@ Bivariate Wiener model
@ Multivariate inverse Gaussian model
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Motivated example: HMT degradation data

@ To maintain the high availability and high efficiency of heavy machine tools, preventive
maintenance and system health management are implemented.

@ The heavy machine tools (HMT) have two important PCs: the positioning accuracy
and the output power.

@ HMT fails if the value of the positioning accuracy exceeds the threshold level w; = 35
or the value of the output power exceeds the threshold level wo = 120.
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HMT with two PCs
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Figure 14: Degradation paths of the positioning accuracy and output power.
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Objective

@ The positioning accuracy is measured by programmed procedures, while measurements
of the output power are recorded by the system operators, and may be missing at
some time points.

@ Historical information and experts’ experience have indicated that these two
performance indicators are correlated.

Objective

o How to build a model for bivariate degradation process?

o How to estimate the missing values of the output power?
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Related Literature

@ LED system consists of many LED lamps for different lighting purposes, and each LED
lamp can be viewed as a PC in the LED system (Sari et al., 2009).

@ A rubidium discharge lamp: The rubidium consumption and the light intensity (Sun
and Balakrishnan, 2013).

@ Modeling methods: using copula function (Sun et al. 2010,2012, Wang et al.,
2014,2015, Peng et al., 2016, Duan and Wang, 2018).
o Difficult to choose copula function.
o Reliability function of product is not analytic.
@ No physical explanation.
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Bivariate Wiener degradation model

Assume two PCs in a system, degradation process of the s-th PC is:

Ys(t) = O‘Bshs(tafys) + O'SBS(hS(taryS))v S = 17 27 (29)

@ (5 and o denote the drift parameter and the diffusion parameter.
@ hy(t,vs) is a non-decreasing function of time with h4(0,vs) = 0.
@ B,(-) is a standard Brownian motion, where By (-) and B(-) are independent.

@ « is random, and follows normal distribution with mean 1 and variance §2.

Comments on «

o « could describe the unit-to-unit variation among the systems.

o With the same working environment for both PCs, « is a common factor affecting the
degradation process.
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Joint PDF of Yi(t) and Y5(¢)

(3o(0) ~ Natin, 2, (30

31h1(t,71))
Baha(ty2)/’

othy(t, 1) + 02BERI(t, 1) 62B1Baha(t, Y1)ha(t, V2)
626182k (t,y1)ha(t,v2)  o3ha(t,y2) + 6285k (L, 12)

where f1 = (
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Failure-time

@ Denote that the threshold level of Y;(¢) is ws, s = 1, 2.
@ The lifetime of the s-th PC is defined as T, = inf{t : Y; > w;}.
@ The joint CDF of 77 and T3 is

F(tl,tz) = A+ Ay + Ag +A4,

where A, = bon (—w1+,81h1(t1,71) —wa+PBaha(ta,72) Cs )

K ’ Ky ? K1 Ko
_ 2ﬁ2w2 2,32 —w1+ﬂ1h1(t1,"/1)+01 —wa—Boha(ta,y2)=Cs —Cjs
Az = exp { + bun % e Ko
_ 2ﬁ1w1 251“’ 52 —wi1=B1hi(t1,71)— Cs —watBaha(t2,72)+Cs  —Cs
Az = exp { + = bun K % Ko

Aq = exp

/—"\

261w1 2o (B 4 Bm)Q}

—wl—ﬁlhl(tl,’Yl)—Cl—Cs —w2—52h2(t27"/2)—02—c4 Cs
van( i, s Ky ' K1 Ko
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Failure-time

1 R e 2 — 20y + 42
b’U’I’L(.’L‘l,iEQ,e) = m/ / exXp {—TZZ)Z/} dl‘dy,
Ky = \/U%hl(tl,’h) + 826203 (t1, 1),

Ky = \/03ha(ts,72) + B362h3 (12, 72),
C1 = 2B1hy(t1, 1) Baw26 /03,

Cy = 2811 Baha(ts,72)6° /07,

Cs = 287 ha(t1,71)w16° /o7,

Cu = 203 ha(ta, 12)wod? [0,

Cs = Brha(t1,71)B2ha(t2,72)0°.
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Failure-time

@ The lifetime of system is defined as T' = min(T}, T3).

Reliability of system at time ¢

R(t) = F(t,t) + 1 — Fr,(t) — Fr, (1), (31)

where Fr, (t) is the CDF of Tj:

Fr, () = q>( Buhs(t %) — )

V/B262(hs(t,7s))2 + 02hs(t, vs)
2Bsws + 2/8352"‘)_3’ }‘1’ _ 2B38%wshs(t,vs) + 03 (Bshs(t,7s) + ws)
o2 ol 02/B282(hs(t,7s))? + 02hs(t,vs)

S

+ exp{
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@ The RULof the s—th PC at time ¢ is defined as
LE‘:) =inf{l : V(I + ti) > ws|Ys(t;) <ws,j=1,2,--- ,k}, s=1,2,

where t1, ..., t; are the measurement times.

@ The RUL of the system is defined as

Ly, = min(L{Y L)

k

@ The reliability function of L;, at time [ can be computed as follows:

RLtk (l) = FLtk (la l) +1-— FL&)(Z) - FLEi) (l)’ (32)
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F (1) is the CDF of L,(:), and its analytical form is
tk

FLis)(l) —® ( ﬁﬁs~hs(l773) — (ws — Y;(tk)) ) + exp{ 2/1/6)3(‘-‘130; }/s(tk))
‘ V/B282(ha(1,72))? + 02ha (1 7.) :
R A
o [ 2828w = Vit ho(lr) + o2 (iBuhs(y) + (s = Vi) |
020/ 8262 (ha(1.7))? + 02 (1. 72)
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@ Suppose that a total of n systems are tested in an experiment.
@ For the i-th system, let y;,; be the j-th degradation observation of the s-th PC' at the
measurement time t;55, s = 1,2, =1,2,...,mys.

@ yis0 =0. Let Zisj = Yisj — Yis(j—1) and
Aisj = hs(tisjyvs) — hs(tis(]‘_l),'}/s), S = 1,2,i = 1,2, .. .,n,j = ].,2, ey, Mg

@ Then for the i-th system, the model can be described as

Zisjlai ~ N(aiﬂsAisjaUEAisj)7and Q; ~ N(1752)7

where s =1,2, j =1,2,...,mys.
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Bayesian analysis

0 B, ~ N(1,10%);1/02 ~ IG(0.01,0.01); 1/62 ~ IG(0.01,0.01); v, ~ IG(0.01,0.01).

Gibbs sampling
@ Full conditional posterior distribution of «; is normal distribution with mean fi; and
variance 62, where 62 = (672 + 07 282h1 (titmiys 11) + 05 2B2ha (tizmm, 72)) L,
fi = 02(672 + 01 2 Bryitmay + 03 2BaYizms)-
@ Full conditional posterior distribution of 3, is normal distribution with mean fig, and
variance &%8, where

n
53, = (L/ag, + Y aths(tismi,,15)/03) 7,

i=1

n
fis, = 53, (s, /0F, + D Qilhism,, /02),5 = 1,2.
i=1

89 /132
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Bayesian analysis

Gibbs sampling

@ The full conditional posterior distribution of o2 is inverse gamma distribution
n n Mis R
IG | as+ > mis, bs+ 3 > Y Gua—aiBshin)’/an,; |, s =1,2.
i=1 i=1j=1
@ The full conditional posterior density function of ;s is proportional to

zrs

2
1
1};[};{ vV Aisj

& (Zisj - aisAisj)Q ca—1
L. eXP{ 2U§A15J } (’y,s) eXp{ ds’ys}‘

(2
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Estimation of the missing values

@ If we just observe the degradation value of Y;(t;) at the time ¢, estimating the
missing value Y5(t) is of our interest.
0 Let AY(tr) = Ys(tr) — Ys(tr—1), and Ahg, = hg(tr,vs) — hs(te—1,7s), s =1,2.

@ We can obtain that

(gg:%) ~ No(Agur, AS), (33)

Ah
where Apy = (g;Ah;z),

AY — 02 Ahyy, + 0282 (Ahqy)? 828182 A Ahay .
621 BaAhy g Ahay, 03 Ahay, + 6233 (Ahoy)?
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@ Given AY](ty), the conditional mean of AY3(t) is

628182 Ahay,

E(AY>(ty)) = Bo2Ahay + o 82520y

(AY1(tk) — PrAhag).

@ The Bayesian estimation of Y3(tx) can be obtained as

521 82Ahay

Ya(tk) = Ya(te-1) +/ ['82Ah2k * 02 4 6232 Ahix

(AYi1(tk) — B1Ahak) | f(©]2)dO,

where f(©|z) is the posterior PDF of ©.
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Simulation study

@ The mean degradation paths of the two PCs are 1.5¢ and 0.7t2. Thus,
(B1,B2) = (1.5,0.7), and (71,72) = (1,2).
@ The diffusion parameters (02, 02) = (0.4,0.3), and §% = 0.04.
@ A total number of n systems are put into test, and each systems are measured m

times. We choose n = 3,4,5 and m = 6, 10.

@ 10,000 independent datasets for each experimental setting are generated to compute
the point estimates, the root mean square errors (RMSE) and the empirical coverage
probabilities with nominal level 95%.

@ We run the Gibbs sampling 80,000 times, and discard the first 20,000 times as the
burn-in period. The length of the thinning interval is taken as 20.
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Multivariate degradation model Bivariate Wiener model

Table 12: Bayesian estimates of the parameters based on 10,000 replications.

(n,m) Estimates [ Ba o? o3 52 o Yo

(3,6) Mean 1521 0.718 0.415 0.332 0.0376 1.113 2.215
RMSE 0.212 0.116 0.175 0.117 0.0239 0.221 0.454

(3,10) Mean 1.524 0.714 0.413 0.321 0.0382 1.112 2.224
RMSE  0.205 0.110 0.138 0.101 0.0204 0.201 0.398

(4,6) Mean 1518 0.717 0.421 0.322 0.0377 1.095 2.150
RMSE  0.194 0.105 0.168 0.107 0.0199 0.189 0.361

(4,10) Mean 1519 0.711 0.417 0.318 0.0382 1.091 2.121
RMSE  0.185 0.099 0.128 0.091 0.0178 0.157 0.326

(5,6) Mean 1.505 0.703 0.416 0.312 0.0386 1.043 2.103
RMSE  0.167 0.092 0.152 0.089 0.0157 0.146 0.252

(5,10) Mean 1.506 0.708 0.419 0.308 0.0386 1.051 2.107
RMSE  0.150 0.085 0.113 0.085 0.0141 0.102 0.228
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Table 13: Coverage probabilities of the interval estimates with nominal level 95%.

(n,m) B Ba o? 03 52 " Y2

(3,6) 0.912 0.913 0.974 0.979 0.934 0.969 0.982
(3,10) 0.926 0.924 0.976 0.977 0.938 0.965 0.975
(4,6) 0.928 0.922 0.974 0.980 0.940 0.968 0.977
(4,10) 0.931 0.938 0.969 0.976 0.936 0.963 0.968
(5,6) 0.934 0.934 0.969 0.976 0.948 0.964 0.962
(5,10) 0.944 0.942 0.968 0.961 0.948 0.959 0.963
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Misspecification

@ There might be a mis-specification of the distribution «. Another simulation is used to
check the robustness of the normal assumption.

@ We assume that « follows the normal, lognormal, Weibull and Gamma distributions.
@ The proposed model is used to fit data generated under these distributions.

@ The estimated 10% quantile of the failure time distribution is compared with the true
quantile.

@ The relative biases (RB) are computed using 10,000 Monte Carlo replications.
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Table 14: RBs of the estimated 10% quantile under different distributions of a.

(n,m) Normal Lognormal Weibull Gamma

(36)  0.389 0.338 0.417  0.407

(3,10)  0.218 0.0248 0.144  0.096

(4,6) 0.0811 0.168 0.306 0.217

(410) 0.124  0.0421  0.0584  0.030

(5,6) 0.185 0.0960 0.178 0.0578

(5,10)  0.0400 0.0191 0.0758  0.0377
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Case study

@ Following Peng et al. (2016), we assume hq(t,vy1) =t and ha(t,v2) = t72.

Table 15: Bayesian estimation of model parameters using heavy machine tool data.

Our model Peng et al. (2016)
Parameters Mean  SD 95% Cl Mean SD 95% Cl

B 0.871 0.026 (0.826,0.927) 0.875 0.132 (0.675, 1.172)
Ba 0.142 0.040 (0.079, 0.233) 0.162 0.051 (0.086, 0.281)
o? 0951 0.164 (0.683,1.322) x  x x
o2 0.101 0037 (0.050,0.193) x  x x
Y2 1.915 0.091 (1.741,2.092) 1.867 0.091 (1.690, 2.045)
52 0.0084 0.0096 (0.0019, 0.030) X X X
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Multivariate degradation model Bivariate Wiener model

Table 16: Prediction of the missing degradation observations.

Our model Peng et al. (2016)
Parameters Mean SD 95% ClI Mean SD 95% ClI

yo(tin)  76.00 3.38  (69.95, 83.32) 7230 356 (65.64, 79.75)
ya(tae)  57.05 158 (54.12,60.33) 56.26 4.64 (48.71, 67.02)
ya(taro) 7152 1.84 (68.10,75.38) 69.66 6.33 (59.03, 83.98)
ya(tar) 7673 2.08 (72.55,80.76) 7445 6.90 (62.82, 90.03)
yo(ts11) 8552  2.49  (80.94,90.79) 84.43 553 (75.19, 96.88)
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Figure 15: The reliability of the system and the two PCs.

#ER7T (ECNU) Stochastic degradation modeling



BT (EC

Degradation value

Multivariate degradation model

Sampe 1

— Observaton
= - Prediction

Degradation value

Stochastic deg

80

60

40

20

Time

Sampe 2
— Observaton
= - Prediction ?
4
!
!
1
4
1
1
!
1
1
4
4
T T T T
0 5 10 15 20 25

ation modeli

Degradation value

Bivariate Wiener model

80

60

20

20

Sampe 3
— Observaton
- - Prediction P
1
!
1
1
.
(]
T T T T
5 10 15 20 25 30
Time

Figure 16: Estimation of degradation values of the second PC.




Multivariate degradation model Bivariate Wiener model

0.8 1.0

0.6

Reliability of residual life
0.4

0.2

0.0

Figure 17:

] ~ — Sample 1
‘\ “\ - - Sample 2
i \ \ -=- Sample 3
\ .
\ A
\ \
] \ \
\ 8
\ \
\ \
- \ \
\ .
\ \.
\ \
\ N
- . "
N .
~ N
T T T T T T T
0 5 10 15 20 25 30
Time

The reliability functions of the RUL for the three systems.
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e Multivariate degradation model
@ Bivariate Wiener model
@ Multivariate inverse Gaussian model
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Motivated example: PMB degradation data

PC1 PC2
0.34 4 0.34

p-value: 0.737
Unit
-1

p-value: 0.62

0.2+

Value
t
Sample

0.1+

0.04
] 10 20 30 0 10 20 30 T T T T T T T T
Time (days x3) 00 0.1 0.2 ‘Il')hseoreti?:gl 0.1 0.2 03
(a) Degradation paths (b) Q-Q plots using IG distribution

Figure 18: Summary of Permanent magnet brake (PMB) data for two PCs: degradation
paths and Q-Q plots.
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PMB data with two PCs

Unit 1 2 3 4 5 6 7 8
Correlation 0.819 0.749 0.806 0.840 0.779 0.749 0.765 0.800

Figure 19: Pearson correlation coefficients of two PCs across various units.

@ Objective: establish a multivariate IG process model incorporating common effects.
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Related literature

Multivariate degradation modeling

@ Copula-based method

@ Multivariate distribution-based method
@ Common-effect-based method

a) Frailty model-based method
b) Stochastic process summation method
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Challenges

Q Copula-based method: Faces difficulties in selecting appropriate copulas and
providing clear physical interpretations.

©Q Muiltivariate distribution-based method: Mostly limited to bivariate cases, with
challenges in extending to multivariate distributions.

Q@ Frailty model-based method: The use of a single frailty factor limits the model's
generality.

Advantages of stochastic process summation

@ Model parameters increase linearly with dimensionality, simplifying high-dimensional

degradation modeling.
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Contributions

(1) Construct a multivariate rlG process using the common-effect method and analyze its
properties and system lifetime distribution.

(ii) Apply Gauss-Legendre (GL) quadrature for approximating the complex integral in the
lifetime distribution.

(iii) Use the EM algorithm for parameter estimation, with parametric bootstrap for
confidence intervals.
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Model definition

Degradation process of the k-th PC

Yi(t) = Xp(t) + Z(8),k=1,..., K, (34)

where Z(t) ~ 1ZG (Ao(t),7) and X (t) ~ rZG (Ak(t),~y) are independent of
each other, Ax(t) and Ay(t) are monotonically increasing functions of t.

Based on the additive property of the rlG distribution, Yy (t) is

Yi(t) ~ rIG (As(t) + Ao(t),7) k= 1,..., K. (35)
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Proposition 1

The mean and variance of the degradation process Yj(t) are
Ao(t) + Ak ()

E[V;(t)] = ————, and Var[Yk(t)]:M

v 73 ) (36)

respectively. Meanwhile, the common effect Z(¢) introduces dependence

among the multiple degradation processes

min (Ao (t1), Ao (t2))
3

Cov [V, (t1), Y, (t2)] = k1 # k. (37)

At any given time t, Pearson correlation coefficient is

Ao(t)
vV (Ao(t) + Ag, (1) (Ao(t) + Ag,(t))

P [Ykl (t)a Ykz (t)] = ;kl 7£ k2- (38)

v
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Proposition 2: Joint PDF and CDF of Yi(¢),..., Yk (t)

K
fre (W, k) / fric (z; Ao(2) HfrIG Yk — 2; Ap(t),v) dz,

where § = min{y1,...,yx }, where y1,...,yx are the observed dagradation
values, f,rc(+) is given by (9). The CDF is expressed as

Fy@y (Y1, -, YK) / fric (23 Ao(2) HFrIG (ye — 25 Ax(2),7) dz2,

where F,1¢(+) is given by (10).
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System failure-time

Let Tp = inf{¢t : Y1(t) > Dy or --- or Yi(t) > Dk}, where
D = (Dy,Ds,..., D) is a vector storing all PC failure thresholds.

Proposition 3: CDF of system failure time Tp

7 K
FT’D(t | A(t)7’77’D) = /0 ll - H (FTIG(Dk - Z;Ak(t)ay))‘| f'rIG (Z;Ao(t),’)’) dZ,
k=1

where A(t) = (Ag(t),...,Ax(t)), and § = min{yi,...,yx}.
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Integral approximation

GL quadrature method

CDF of system failure-time can be approximated as

FT‘D (t | A(t),"y, D)

~l K _ ~
= g;wq ll = H <FTIG(D/€ = M;Ak(t),y))] fric (M;Ao(t),y) )

2
k=1

where [ is a given order, u, is the root of the Legendre polynomial and wj is
the corresponding weight.
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@ n systems are tested in an experiment.

The degradation of the K PCs in the i-th system are measured at m; time points,
denoted as T; = (ti1,. .-, tim,)

Degradation values are Y; 1, = (Yik1,..., Yigm,) fork=1,... . K, i=1,...,n.

The degradation increments of the k-th PC between (t; ;_1,t; ;] as
AYikj 2 Yig— Yk forj=1,...,m.

Sett;0=0and Y; 10 =0.

Denote AY; . ; = (AYi1j,. .., AYi,K,j)/-
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Parameter

@ Aw(t) = A(t; ag, Bi) involves unknown parameters oy, and i, where kK =0,..., K.
@ Power-law form Ay (t) = Bxt“* and log-linear form Ay (t) = B [exp(ayt) — 1].

@ For parameter nonidentifiability problem, we assume Ag(t) = Ag(t; ap).

@ Let A(t) = (Ao(t),...,Ax(t)).

/!

@ Model parameters are 8 = {3, a, v}, with 3 = (81,...,8k) and a = (ap, ..., k) .
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Likelihood

Given the observed data AY;.;,i=1,...,n,7=1,...,m;,

Likelihood function

0 = arg maxz Zlnp (AY;.; | 0)
L

with

Agi,j
p(AY;',;,j | 0) =/0 fria (Azi,j§AA0(ti,j)v7)
K

x T fric (Ayips — Azig; Ad(tig), ) dAz g, (39)
k=1

where Ag; ; = min{AY;1,...,AY; g ;}.
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Multivariate degradation model Multivariate inverse Gaussian model

@ Consider Z; j = Z; (t; ;) fori=1,...,n,j =1,...,m; as the missing data;
@ Define Zi:(Zi,17--- 'Lm,) AAlkJ —AAk( ) =0,...,K.
"] A}/i,k,j - AZZ,] | Z,L ~ T’Ig (AAi,k,j;fy)y with 0 < AZz,j < Agm

@ Denote Y ={AY;.;,i=1,....,n,j=1,...,m;}, and Z={Z,..., Z,}.
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Log-likelihood with the complete data

>

(6 1Y,z2)=>"
=17

i

K
{Zh’lp (AY%,k,j — AZi’j | AZi’j) - lnp (AZl’J)} 5 (40)

1 (k=1

1
lnp(AYi,k’j — AZi,j | AZi’j) = — 5 1n(271') + In AAi,k,j — gln (AY;"]@J' — AZi,j)

AAFy V(BTG 5 = B 5]

AA’L ] — 9
IR S Ay AZiy) 2

AN, _1?AZy
ONZ; 2

1
lnp (AZl,]) == 5 111(271') +In AAi,O,j - ’YAAi,O,j = ;ln AZi’j =
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@ Initialization: Start with initial values 8(®) for the parameters 8, and set the tolerance
error w.

@ E-step: Calculate ) (0 | 0)) =1 [((0 | ¥,Z) | Y,00°)], based on the s-th iteration
of parameters estimation ().

@ M-step: Compute the (s + 1)-th parameter estimation 06t using
¢+ = argmaxg Q CA 6)).

@ lteration: Iterate through the E-step and M-step until ||0(s+1) — H(S)H < w, where

|| - || denotes the Euclidean distance.

@ Output: Obtain the ML estimates of 6.
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Determine initial parameter estimators

@ Based on AV, ; = 1/n Y0 AYip, A2y =30 (AYik; — AV )/ (n— 1),

we calculate the estimate for ~:

K i Ve
D k=1 Z;nﬂ AY. k. j
K i :
> k=1 Z;‘nﬁ A5:2,k,j

’?:

© Assuming 4 is known, we optimize the formula to estimate 3 and «.

g e frwr var [AY; j]
n m; K 22 2
L z TAY
=oing DD DRy T Ak AN Ak
i=1 j=1 k=1 0, o~
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Model validation

@ Goodness of fit (GOF) test: Evaluates each PC's rIG model using x? Q-Q plots and
the KS test based on the statistic [JAY; ;& — AAg(ti ;) — Ado(ti ;)]?/AYi .k, which
approximates an i.i.d. x? distribution.

@ Common dispersion parameter ~ test: Analyzes if all PCs operate under a common
~ or distinct ; for each PC through the chi-square test statistic 7 = —2(¢; — £5),
contrasting the log-likelihoods of a unified model against a heterogeneous model.

@ Model selection: Uses the Akaike Information Criterion (AIC), AIC = 2k — 2/, to
determine the most suitable model, focusing on the trade-off between model fit and

complexity.
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Simulation study

@ A multivariate rlG process with common effects with three PCs, i.e., K = 3.

Table 17: Four combinations of Ag(t) and Ag(t) with corresponding parameters.

Scen. A (t) Ao(t) o’ B’ 5 D

[ Brto tao (1,0.8,1,1.2)  (0.8,1,1.2) 4 (3.6,4.8,7.2)
I Brto exp(aot) —1 (1,0.25,0.33,0.37) (0.8,1,1.2) 4  (4,8,13)

I By [exp(akt) — 1] tao (0.05,0.3,0.4,0.4) (0.8,1,1.2) 4 (0.44,0.66,0.88)

IV By [exp(axt) — 1] exp(aot) —1 (0.1,0.1,0.1,0.1) (0.8,1,1.2) 4 (0.42,0.56,0.42)

@ n units is measured at the same time intervals, and all m; are equal.

@ Three unit sizes n: 5,8, and 10. For each configuration, we perform 500 replications.
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Figure 20: RRMSE (x1072) of estimators across different unit sizes and scenarios.
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Figure 21: CP (x100%) of estimators across different unit sizes and scenarios.
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Performance of reliability estimation

Mean time to failure of the system: MTTF = [ 1 — Fp(t | 8, ,, D)dt.
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Figure 22: RRMSE (x1072) of MTTF estimators across different unit sizes and scenarios.
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PMB degradation data

Table 18: Parameter point estimates regarding the PMB data.

Model Scen. (7] aq a9 ﬁl ,82 vy AIC

| 0.866 1.296 1.463 0.028 0.124 3.030  -2219.427
1l 0.724  0.104 0.068 0.942 6.182 4375  -2494.123

Proposed
11 0.100 0.994 1.205 0.395 0.531 4263 -2603.588
\% 0.098 0.009 0.025 42.099 30.476 4.299 -2594.714
Power - 1.518 1.456 0.151 0.317 3.703 -637.266
Independent
Log-linear - 0.056  0.054 6.830 11.944  4.079 -744.887
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PC1 PC2 PC1 PC2

| p-value: 0.645

p-value: 0.295
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Figure 23: Summary of PMB data analysis results: Q-Q plots under scenario Il model and
the estimated mean degradation path.
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Figure 24: Correlation coefficients and reliability curves for PMB data.
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Fatigue crack-size data
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Figure 25: Degradation paths for fatigue crack-size growth data.
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Multivariate degradation model Multivariate inverse Gaussian model

Table 19: Parameter point estimates regarding the fatigue crack-size data.

Model Scen. o a1 Qo as b1 B2 B3 0l AlC

I 1.178 1327 1332 0.736 0.796 0.415 0.249 4.836 -717.838
1l 0.957 0.155 0.161 0.162 9.828 6.094 3.429 6.648 -804.636

Dependent
1l 0.249 1.201 1.153 0.946 1999 1.490 1310 6.412 -822.131
\% 0.067 0.119 0.111 0.090 19.683 16.286 15.236 6.789 -1410.667
Power - 1.479 1359 1206 1.129 1.119 1.107 5.254 -221.197
Independent
Log-linear - 0.126 0.105 0.081 17.880 17.698 17.978 6.602 -281.749
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Figure 26: Summary of fatigue crack-size data analysis results: Q-Q plots under scenario IV
and the estimated mean degradation path.
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Millions of cycles

Figure 12: Reliability function and PDF for fatigue crack-size data.
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Outline

o Conclusion
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Conclusion

Conclusion

Degradation modeling
@ Two-phase degradation model
o Wiener model
o Inverse Gaussian model
@ Multivariate degradation model
o Bivariate Wiener model

o Multivariate inverse Gaussian model
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Conclusion

Thanks!
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