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Introduction

Introduction

The developments of low-cost sensing and monitoring technologies make more
industrial systems equipped with on-board sensors to monitor their health conditions.
The collected data can be used to predict system failures and thus guide maintenance
scheduling ⇒ predictive maintenance (PdM).
However, the existing PdM literature separates two inter-related stages—prognostics
and maintenance decision making

Either studies remaining useful life (RUL) prognostics without considering
maintenance issues.
Or optimizes maintenance plans based on given prognostic information.

Zhuang et al. (ZJSU) BDL-PdM 2 / 33



Introduction

Prognostic driven PdM
Nguyen and Medjaher [8] were the first to study prognostic driven PdM problems.
They utilized an LSTM network to predict system failure probabilities at future time
intervals, which drive maintenance and spares ordering decisions upon periodic
inspections.
Other papers: [1–3].

Shortcomings
1 Cannot capture prognostic uncertainties.
2 Maintenance decisions can be freely implemented. In practice, however, maintenance

execution is largely constrained by operational schedules (e.g., aircraft maintenance).
3 Cannot recommend long-term maintenance plans with evolving prognostics.
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Introduction

Contributions
Prognostic stage: we adopt the BDL-based framework in [5] to characterize two type
of prognostic uncertainties and produce a predictive RUL distribution.
1 Epistemic uncertainty: the lack of knowledge on the true model and can be reduced

by acquiring more information.
2 Aleatoric uncertainty: concerned with random, uncontrollable disturbances in

sensory data such as measurement errors.
Maintenance decision-making stage: update maintenance and spares ordering
decisions with the latest prognostic information, while satisfying operational
constraints on maintenance execution.
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Prognostic driven dynamic predictive maintenance framework

Figure 1: Proposed prognostic driven dynamic PdM framework.
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Prognostic driven dynamic predictive maintenance framework Bayesian deep learning-based prognostics

Two type of uncertainties

y = f(x;Θ) + ϵ, (2.1)

where f(·;Θ) represents a functional mapping with parameters Θ and
ϵ ∼ N

(
0, η2

)
is a Gaussian noise term with mean zero and variance η2.

1 Epistemic uncertainty arising from Θ and aleatoric uncertainty captured by η2.
2 Both would contribute to divergence between prognosis and actual results.
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Prognostic driven dynamic predictive maintenance framework Bayesian deep learning-based prognostics

BDL-based network for RUL prognostics

Figure 2: BDL-based RUL prognostics at the training time.
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Prognostic driven maintenance decision making
Update maintenance and spares ordering decisions dynamically, while satisfying
operational constraints on maintenance execution.

Assumption
i) Maintenance is perfect through replacing systems with new identical spares.
ii) Spare parts are ordered only when needed so as to minimize inventory holding costs,

and the lead time is a constant, denoted by L.
iii) Maintenance can be executed when spare parts are unavailable, but it incurs an extra

out-of-stock cost.
iv) Maintenance activities can only be executed in a series of time windows

S = {[td1
, te1 ] , . . . , [tds

, tes ]} and can be completed within a single period, whereas
spare parts can be ordered at any time.

Tentative PdM scheduling with operational constraints;
Dynamic PdM updating and adjusting.
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Tentative PdM scheduling with operational constraints
Given the current time tj , the probability density function of RUL, p(y|x∗

1:j), for any y

can be obtained via the prognostic framework.
cp: preventive maintenance cost; cc: corrective maintenance cost; cos: out-of-stock
cost when spare parts are not available; cf : cost of wasting a unit of system RUL; cq:
spare-part holding cost per unit time.

Two scenarios

CR
j,j+k ≈

k−1∑
h=0

ph|j
cc + cos
tj+h

+

+∞∑
h=k

ph|j
cp + cf (h− k)∆t

tj+k
,

CDN
j,j+k ≈

k+1∑
h=0

ph|j
cc + cos
tj+h

.

(2.2)
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Tentative PdM scheduling with operational constraints

The optimal action at time tj+k is thus the one with a lower cost rate:

Aj,j+k =

R, if CR
j,j+k ≤ CDN

j,j+k,

DN, if CR
j,j+k > CDN

j,j+k.
(2.3)

Remark
The framework can not only make an instantaneous maintenance decision at
the current time tj, but also recommend a long-term decision for any future
moment tj+k.
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Tentative maintenance time

T m′

j = T m
j · 1{T m

j ∈S} + T̃ m
j ·

(
1− 1{T m

j ∈S}

)
, (2.4)

where 1{·} is the indicator function that equals to 1 if the argument is true,
and 0 otherwise. In this expression, T m

j = inf
k∈{0,1,... }

{tj+k : CR
j,j+k ≤ CDN

j,j+k} is
the tentative maintenance time when it is in the window S, while
T̃ m
j = inf

ζ∈{α,β}
{tζ : CR

j,ζ ≤ CDN
j,ζ } is the tentative maintenance time when

T m
j /∈ S.
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Figure 3: Tentative PdM scheduling with operational constraints.
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Prognostic driven dynamic predictive maintenance framework Prognostic driven maintenance decision making

Tentative ordering time
To reduce the fluctuation due to dynamic updating, the predictions T m′

j ’s for
the recent Q cycles are averaged to determine T o′

j :

T o′
j =

⌊∑min{j−1,Q−1}
q=0 T m′

j−q

min{j, Q}

⌋
− L. (2.5)

where ⌊x⌋ = max{n ∈ Z | n ≤ x}.
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Prognostic driven dynamic predictive maintenance framework Prognostic driven maintenance decision making

Dynamic PdM updating and adjusting
With successively updated (T m′

j , T o′
j ), we update a dynamic PdM.

Optimal ordering time

T o∗ = inf
j∈Z+

{tj : T o′
j ≤ tj}. (2.6)

Predicted maintenance time

T m′
= inf

tj∈S
{tj : T m′

j ≤ tj}. (2.7)

Mismatch (T o∗ + L ̸= T m′), resulting in spare-part holding or shortage
costs.

Zhuang et al. (ZJSU) BDL-PdM 14 / 33



Prognostic driven dynamic predictive maintenance framework Prognostic driven maintenance decision making

Let ta = T o∗ + L, and tb = T m′. To assess a series of average cost rates over
the interval [min{ta, tb},max{ta, tb}], there are three scenarios:
ta < tb

T m∗
= arg min

ta+j∈S
{Ca,a, · · · , Ca,a+j, · · · , Ca,b} , (2.8)

where

Ca,a+j =
j−1∑
h=0

ph|a
cc + cqh

ta+h
+

+∞∑
h=j

ph|a
cp + cqj + cf (h− j)

ta+j

for j = 0, 1, . . . , b− a.
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ta > tb

T m∗
= arg min

tb+j∈S
{Cb,b, · · · , Cb,b+j, · · · , Cb,a} , (2.9)

where

Cb,b+j =
j−1∑
h=0

ph|b
cc + cos
tb+h

+
+∞∑
h=j

ph|b
cp + cos · 1{j<a−b} + cf (h− j)

tb+j

for j = 0, 1, . . . , a− b.

ta = tb

T m∗
= T m′

. (2.10)
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Performance evaluation of the dynamic PdM policy

Actual cost rate of the r-th life cycle (runs R life cycles)

CRr =


cp + cosδr + cqκr(1− δr) + cf

∑+∞
h=1 hph|ψr

T m∗
r

,Xr = T m∗

r ,

cc + cosδr + cqκr(1− δr)

T f
r

,Xr = T f
r ,

(2.11)

Average cost rate for all life cycles

CR =

∑R
r=1Xr · CRr∑R

r=1Xr
. (2.12)
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Numerical experiments Case description

Case description

C-MAPSS dataset
Made available by the NASA Ames Prognostics Center of Excellence.
“FD001” sub-dataset are used, which are obtained under the same operational
condition (training data 100, test data 100).
All sensor signals, operational variables, and cycle times are used as inputs (an
end-to-end solution).
Sliding time window approach increase the amount of training data (25);
Each sample is preprocessed by min-max normalization.
A linear RUL function with a maximum value of 125 is utilized for each training
sample.
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Numerical experiments Discussion of prognostic accuracy

Evaluation criteria

Score: SC =
∑M

m=1 sm, where sm =

e−
dm
13 − 1, if dm < 0,

e
dm
10 − 1, if dm ≥ 0.

Root mean square: RMSE =

√∑M
m=1(dm)2

M .

Accuracy: AC = 100
M

∑M
m=1 am, where am =

1, if dm ∈ [−13, 10],

0, if dm /∈ [−13, 10].

Note that a smaller SC, a smaller RMSE, or a larger AC indicates a better
RUL prediction performance.
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Numerical experiments Discussion of prognostic accuracy

Comparison with other prognostic methods

Table 1: Comparison of point prediction with other methods.

SC RMSE AC

DCNN [6] 273.7 12.6 −
LSTMBS [7] 481.1 14.5 −
BDL-LSTM [5] 267.2 12.2 −
GA-RBM-LSTM [4] 231.0 12.6 −
DBNBP-IPF [9] 543.0 − 51%
DBN-IPF [9] 314.0 − 63%
BiLSTM-ED [11] 273.0 14.7 57%
SBI-EN [10] 228.0 13.6 67%
Proposed method 234.9 12.7 70%
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Numerical experiments Dynamic predictive maintenance framework

Figure 4: RUL interval estimates for four test engine units.
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Figure 5: Uncertainty quantification for test engine unit #24.
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Numerical experiments Dynamic predictive maintenance framework

Dynamic predictive maintenance framework
the FD001 training set will be divided into two parts (80 engines for network training,
20 units for validation).
cp = 100, cc = 500, cos = 10, cf = 1, cq = 0.1, L = 20 and Q = 6 [8].
Three maintenance-window cases: (i) S = {1, 2, . . . }. (ii) S = {[10, 20], [30, 40], . . . }.
(iii) S = {10, 20, . . . }, which is a periodic inspection.
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Numerical experiments Dynamic predictive maintenance framework

Tentative PdM scheduling with operational constraints

Table 2: Cost rates for engine unit #81.

Cycle (200 + k) CMF DN-cost R-cost A200,200+k

200 0 0 0.736 DN
...

...
...

...
...

234 0.301 1.095 1.031 DN
235 0.442 1.316 1.328 DN
236 0.529 1.609 1.490 R

237 0.653 1.803 1.740 R
238 0.730 2.166 1.862 R

...
...

...
...

...
247 1.000 2.452 2.452 R

Tentative time: (T m′

200, T o′
200) = (236, 216), (236, 215), (230, 212).
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Dynamic PdM updating and adjusting

Table 3: Dynamic PdM policy of unit #81 in the three cases.

Cycle
Case (i) Case (ii) Case (iii)

T m′

j T o′

j T m′

j T o′

j T m′

j T o′

j

216 241 219 240 218 240 216
217 238 219 238 218 230 216
218 237 219 237 218 230 215
219 236 219 236 218 230 215
220 238 219 238 218 230 215

...
...

...
...

...
...

...
236 240 221 240 219 240 217
237 240 221 240 219 - -
238 243 221 240 219 - -
239 242 221 - - - -

Optimal time :T o∗ = 219, 218, 216; T m∗
= 239, 238, 236, Actual = 240.
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Numerical experiments Comparison with different maintenance policies

Benchmark maintenance policies
Classical PdM policy (CPM): based on historical reliability data.

T †
r = T̄ F · 1{T̄ F∈S} + tα† ·

(
1− 1{T̄ F∈S}

)
,

where T̄ F is the system’s mean time to failure and α† is the time slot at the end of
the last window before T̄ F .
Ideal PdM policy (IPM): based on the assumption of perfect predicted failure time.

T ‡
r = T P

r · 1{T P
r ∈S} + tα‡ ·

(
1− 1{T P

r ∈S}
)
,

where α‡ is the time slot at the end of the last window before T P
r .

Three state-of-the-art PdM policies (see [8], [12], and [2]) under the periodic
inspection policy.
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Numerical experiments Comparison with different maintenance policies
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Figure 6: Average cost rates for test engines under periodic inspection.
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Figure 7: Performance of the three policies under cases (i) and (ii).
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Figure 8: Cost rate for each test engine under cases (i) and (ii).
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Conclusion

Prognostic driven PdM framework
Prognostic stage, we propose a BDL-based framework to qualify aleatoric and
epistemic uncertainties, and output a predictive distribution of RULs.
Maintenance decision-making stage:

a practical policy in general inspection scenarios is presented. This model enables
rapid evaluation of the cost rates of R- and DN-option at any moment, and
produces tentative PdM scheduling with operational constraints.
As more CM data are progressively collected, our framework dynamically updates
and adjusts maintenance and spare-part ordering decisions to generate a more
reliable PdM scheduling.
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