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The organization of the supplementary document is as follows: Section S1 provides

proofs of propositions; Section S2 details the technical aspects of the integral approximation;

Section S3 elaborates on the technicalities of the EM algorithm, including the computation of

conditional expectations during the E-step and the derivation of first-order partial derivatives

of the Q-function. Sections S4 and S5 present additional results from simulation and case

studies, respectively. Additionally, the R code for implementing the GL method and EM

algorithm is available online. For detailed descriptions, see Section S6.

S1 Proof of propositions

S1.1 Proof of Proposition 1

For the degradation of the k-th PC, we have

E [Yk(t)] =
Λ0(t) + Λk(t)

γ
, and Var [Yk(t)] =

Λ0(t) + Λk(t)

γ3
. (S1)

Before proceeding to derivation Cov [Yk1 (t1) , Yk2 (t2)], we first calculate the following results.

Let Z(t) be a rIG process, with parameters Λ0(t), and γ. When t1 ≤ t2,

E [Z (t1)Z (t2)] = E {Z (t1) [Z (t2)− Z (t1) + Z (t1)]}
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= E
[
Z2 (t1)

]
+ E [Z (t2)− Z (t1)]× E [Z (t1)]

=
Λ2

0(t1)

γ2
+

Λ0(t1)

γ3
+

Λ0(t2)− Λ0(t1)

γ
× Λ0(t1)

γ

=
Λ0(t1) [1 + γΛ0(t2)]

γ3
, (S2)

when t1 > t2, E [Z (t1)Z (t2)] = {Λ0(t2) [1 + γΛ0(t1)]}/γ3. Thus,

E [Z (t1)Z (t2)] =
min(Λ0(t1),Λ0(t2)) [1 + γmax(Λ0(t1),Λ0(t2))]

γ3
.

For the degradation of two different PCs Yk1(t1) and Yk2(t2) with k1 ̸= k2, and t1 ̸= t2

we have

Cov [Yk1 (t1) , Yk2 (t2)]

=E [Yk1 (t1)Yk2 (t2)]− E [Yk1 (t1)] E [Yk2 (t2)]

=E [(Z (t1) +Xk1 (t1)) (Z (t2) +Xk2 (t2))]−
[Λ0 (t1) + Λk1 (t1)] [Λ0 (t2) + Λk2 (t2)]

γ2

=E [Z (t1)Z (t2)] + E [Z (t1)Xk2 (t2)] + E [Xk1 (t1)Z (t2)] + E [Xk1 (t1)Xk2 (t2)]

− [Λ0 (t1) + Λk1 (t1)] [Λ0 (t2) + Λk2 (t2)]

γ2

=
min(Λ0(t1),Λ0(t2)) [1 + γmax(Λ0(t1),Λ0(t2))]

γ3
+

Λk2(t2)Λ0(t1)

γ2
+

Λk1(t1)Λ0(t2)

γ2

+
Λk2(t2)Λk1(t1)

γ2
− [Λ0 (t1) + Λk1 (t1)] [Λ0 (t2) + Λk2 (t2)]

γ2

=
min(Λ0(t1),Λ0(t2))

γ3
+

min(Λ0(t1),Λ0(t2))×max(Λ0(t1),Λ0(t2))

γ2
− Λ0(t1)Λ0(t2)

γ2

=
min(Λ0(t1),Λ0(t2))

γ3
(S3)

Subsequently, the Pearson’s correlation coefficient between Yk1(t) and Yk2(t) is

ρ [Yk1(t), Yk2(t)] =
cov [Yk1(t), Yk2(t)]√
var [Yk1(t)] var [Yk2(t)]

=
Λ0(t)√

(Λ0(t) + Λk1(t)) (Λ0(t) + Λk2(t))
. (S4)

S1.2 Proof of Proposition 3

Let the failure time of the k-th PC be represented as follows TDk
= inf {t : Yk(t) ≥ Dk} .

Then, the system failure time can be defined by TD = inf {t : Y1(t) ≥ D1 or · · · or YK(t) ≥ DK} ,
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where D = (D1,D2, . . . ,DK)
′ is a vector storing all PC failure thresholds. The CDF of sys-

tem failure time TD can be derived as:

FTD(t | Λ(t), γ,D) =

∫ ỹ

0

FTD(t | Z(t))f(z)dz,

=

∫ ỹ

0

[1− P (Y1(t) < D1, . . . , YK(t) < DK | Z(t))] f(z)dz

=

∫ ỹ

0

[1− P (X1(t) < D1 − z, . . . , XK(t) < DK − z | Z(t))] f(z)dz

=

∫ ỹ

0

[
1−

K∏
k=1

(FrIG(Dk − z; Λk(t), γ))

]
f(z)dz.

(S5)

where Λ(t) = (Λ0(t), . . . ,ΛK(t))
′. ỹ is defined as ỹ = min{y1, . . . , yK}, where y1, . . . , yK are

the observed dagradation values. Given the complexity of directly integrating the CDF of

system failure time, approximation methods can be employed to simplify the integral. Next,

we introduce the technical details of the integral approximation method.

S2 Technical details of the integral approximation method

The GL quadrature is a numerical integration method particularly suitable for inte-

grating functions over the interval [−1, 1]. Compared with Monte Carlo integration, GL

quadrature could provide an accurate approximation for the integral with a much lower

computational budget (Swarztrauber, 2003). It relies on the selection of roots and weights

based on Legendre polynomials to provide high accuracy in approximating integrals (Babo-

lian et al., 2005). For the integral
∫ −1

1
h(x)dx, the GL quadrature approximation is given

by ∫ 1

−1

h(x)dx ≈
l∑

q=1

wqh (xq) . (S6)

Here, xq are the roots of the Legendre polynomial, and wq are the corresponding weights.

For a given order l, there are l roots and weights, which can be obtained through numerical

methods or by consulting precomputed tables. Generally, the selection of these nodes and

weights aims to achieve full accuracy for polynomials of degree 2l − 1 (Golub and Welsch,

1969).
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Next, we approximate (S5) using the GL integration method. To ensure that the integral

is over the interval [−1, 1], we introduce a transformed variable u = 2z/ỹ− 1. Subsequently,

we perform the GL quadrature approximation on the transformed integral, yielding the

following result:

FTD(t | Λ(t), γ,D)

=
ỹ

2

∫ 1

−1

[
1−

K∏
k=1

(
FrIG(Dk −

ỹ(u+ 1)

2
; Λk(t), γ)

)]
f(

ỹ(u+ 1)

2
; Λ0(t), γ)du,

≈ ỹ

2

l∑
q=1

wq

[
1−

K∏
k=1

(
FrIG(Dk −

ỹ(uq + 1)

2
; Λk(t), γ)

)]
f(

ỹ(uq + 1)

2
; Λ0(t), γ), (S7)

where l is a given order, uq is the root of the Legendre polynomial Pn(uq), which is formulated

as

Pl(uq) =
1

2ll!

dl

dul
q

(u2
q − 1)l,

and wq = 2/
{(

1− u2
q

)
[P ′

l (uq)]
2} is the corresponding weight. We can easily obtain the

weights and nodes for the GL method using the function legendre.quadrature.rules() provided

in the R package gaussquad (Novomestky, 2022). The choice of l significantly impacts the

approximation’s accuracy and efficiency. In our paper, we choose l = 10. The reasons

for this selection, along with comparisons to other approximation methods, are thoroughly

detailed in Section 3 of the main text.

S3 Technical details of the EM algorithm

S3.1 Derivation of the conditional expectations in the E-step

We need to calculate the expectations required in the EM algorithm with respect to

p(Z|Y,θ) in the E-step. In the following, we will suppress the dependence on θ for simplicity.

Based on Eq.(15), we have p(∆Yi,:,j). Then, it is ready to see that

p(Z|Y) =
n∏

i=1

mi∏
j=1

p(∆Zi,j|∆Yi,:,j), (S8)
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and

p(∆Zi,j|∆Yi,:,j) =
frIG (∆zi,j; ∆Λi,0,j, γ)

∏K
k=1 frIG (∆yi,k,j −∆zi,j; ∆Λi,k,j , γ)∫ ∆ỹi,j

0
frIG (∆zi,j; ∆Λi,0,j, γ)

∏K
k=1 frIG (∆yi,k,j −∆zi,j; ∆Λi,k,j , γ) d∆zi,j

(S9)

Then, we can easily obtain three conditional expectations: E
[
(∆Yi,k,j −∆Zi,j)

−1 | ∆Yi,:,j

]
,

E [ln∆Zi,j | ∆Yi,:,j], and E
[
∆Z−1

i,j | ∆Yi,:,j

]
as:

E
[
(∆Yi,k,j −∆Zi,j)

−1 | ∆Yi,:,j

]
=

∫ ∆Ỹi,j

0

(∆Yi,k,j −∆Zi,j)
−1 p(∆Zi,j|∆Yi,:,j)d∆Zi,j,

E [∆Zi,j | ∆Yi,:,j] =

∫ ∆Ỹi,j

0

∆Zi,jp(∆Zi,j|∆Yi,:,j)d∆Zi,j,

E
[
∆Z−1

i,j | ∆Yi,:,j

]
=

∫ ∆Ỹi,j

0

∆Z−1
i,j p(∆Zi,j|∆Yi,:,j)d∆Zi,j,

(S10)

where ∆Ỹi,j = min{∆Yi,1,j, . . . ,∆Yi,K,j}. The integral involved in (S10) can also be evaluated

by GL integral approximation, see Section S2.

S3.2 First order partial derivatives

Taking the first partial derivatives of Q-function in Eq.(18) with respect to θ and equating
each to zero, we obtain the following equations:

∂Q(θ)

∂αk
=

n∑
i=1

mi∑
j=1

∂∆Λi,k,j

∂αk

{
1

∆Λi,k,j
+ γ −∆Λi,k,jE

[
(∆Yi,k,j −∆Zi,j)

−1 | ∆Yi,:,j

]}
= 0, (S11)

∂Q(θ)

∂βk
=

n∑
i=1

mi∑
j=1

∂∆Λi,k,j

∂βk

{
1

∆Λi,k,j
+ γ −∆Λi,k,jE

[
(∆Yi,k,j −∆Zi,j)

−1 | ∆Yi,:,j

]}
= 0, (S12)

∂Q(θ)

∂α0
=

n∑
i=1

mi∑
j=1

∂∆Λi,0,j

∂α0

[
1

∆Λi,0,j
+ γ −∆Λi,0,jE

(
∆Z−1

i,j | ∆Yi,:,j

)]
= 0, (S13)

∂Q(θ)

∂γ
=

n∑
i=1

mi∑
j=1

{
K∑
k=0

∆Λi,k,j + γ

[
−

K∑
k=1

Yi,k,j + (K − 1)E (∆Zi,j | ∆Yi,:,j)

]}
= 0, (S14)

for k = 1, . . . , K. Given α and β, the solution of (S14) is

γ =

∑n
i=1

∑mi

j=1

∑K
k=0 ∆Λi,k,j∑n

i=1

∑mi

j=1

[∑K
k=1 ∆Yi,k,j − (K − 1)E (∆Zi,j | ∆Yi,:,j)

] . (S15)
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S4 Additional simulation experiments

S4.1 Additional simulation results for K = 3

Figure S1 displays simulated degradation paths for three PCs with n = 5 across four

scenarios, as specified in Table 2. Scenarios I and IV feature linear degradation trends,

scenario II presents convex paths, and scenario III demonstrates concave paths for each PC.

Table S1 presents the MTTF estimators across various scenarios and unit sizes. We observe

that the MTTF estimates demonstrate low values of RRMSE, and the CPs consistently

approximate 95%. Figure S2 shows the RRMSE (×10−2) of the correlation estimates for

various unit sizes and scenarios over time.

Figure S1: Simulated degradation paths for four scenarios with n = 5. A linear path is shown in scenarios

I and IV, a convex path is shown in scenario II, and a concave path is shown in scenario III.

S4.2 Simulation results for higher dimensions

To demonstrate the effectiveness of the proposed model, we consider a higher-dimensional

scenario with K = 5. Without loss of generality, we use Scenario I as an example and set
6



Figure S2: RRMSE (×10−2) of correlation estimators across different unit sizes and scenarios.
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Table S1: Results (×10−2) of MTTF estimators across different scenarios and unit sizes.

n = 5 n = 8 n = 10

I II III IV I II III IV I II III IV

RRMSE 0.32 0.14 6.47 1.43 0.23 0.12 3.60 0.97 0.20 0.07 3.39 0.82

CP 92.50 93.10 95.08 94.75 95.25 92.08 95.85 93.12 95.20 96.56 94.58 95.44

the true model parameters as α′ = (1, 0.8, 0.9, 1, 1.1, 1.2), β′ = (1, 0.8, 1, 1.2, 1.4, 1.6), and

D = (3.6, 4.2, 4.8, 6, 7.2). The other model parameters and simulation settings remain the

same as those in the case of K = 3.

Tables S2-S4 respectively present the model parameters, correlation coefficients, and

MTTF estimates obtained through the EM algorithm, based on 500 repetitions under dif-

ferent n. As can be seen, the biases are small for all the parameters, and the RRMSEs

decrease as the sample size n. This indicates that the model can provide a satisfactory fit

with moderate n for K = 5. Additionally, in Table S4, we also provide MTTF estimation

results for a model that assumes the PCs are independent. We utilize ML method to infer

parameter estimates. It is evident from the results that under the assumption of model

misidentification, the accuracy of MTTF estimates is significantly lower compared to that

obtained from the proposed model.

Table S2: RRMSE (×10−2) of EM estimators under Scenario I for K = 5 across different unit sizes.

n α0 α1 α2 α3 α4 α5 β1 β2 β3 β4 β5 γ

5 12.36 17.56 11.23 8.26 5.81 4.87 34.49 30.23 24.85 21.46 19.19 7.57

8 9.23 14.31 8.96 6.66 4.95 4.09 25.60 20.78 18.39 16.52 14.29 5.66

10 2.65 11.47 6.95 5.75 4.15 3.62 21.98 16.70 14.69 13.20 11.92 4.42

We conduct additional simulations to assess the computational efficiency and parameter
8



Table S3: RRMSE (×10−2) of correlation estimators under Scenario I for K = 5 across different unit sizes.

n ρ̂1,2 ρ̂1,3 ρ̂1,4 ρ̂1,5 ρ̂2,3 ρ̂2,4 ρ̂2,5 ρ̂3,4 ρ̂3,5 ρ̂4,5

5 11.77 11.20 10.57 10.09 10.68 10.07 9.63 9.59 9.15 8.65

8 8.66 8.30 7.91 7.45 7.89 7.53 7.10 7.24 6.81 6.49

10 4.92 4.71 4.43 4.30 4.40 4.19 4.03 4.04 3.84 3.64

Table S4: RRMSE (×10−2) of MTTF estimators under Scenario I for K = 5 across different unit sizes.

Model n = 5 n = 8 n = 10

Dep. 3.43 2.63 2.29

Indep. 6.58 6.45 6.29

estimation performance across varying numbers of PCs. The parameters βi and αi are

defined as βi = 0.8+0.8(i−1)/(K−1) and αi = 0.8+0.4(i−1)/(K−1), respectively, allowing

βi to linearly increase from 0.8 to 1.6 and αi from 0.8 to 1.2. We set n = 5 and m = 10, with

other settings consistent with Table 2 in the main text. Figure S3 illustrates the impact

of different K values on the average RRMSE of all estimated parameters and the average

runtime per iteration of the EM algorithm under Scenario I. As the dimensionality increases,

there is a continuous improvement in the estimation accuracy, attributed to increased data

volume. Moreover, the computational time for the EM algorithm increases linearly with

K, demonstrating scalability without the typical exponential growth associated with higher

dimensions. This linear parameter growth with K prevents the “curse of dimensionality.”

S5 Additional results of case studies

Figure S4 and S5 give the iteration diagram of EM algorithm parameter estimation under

different scenarios for PMB and fatigue crack-size data, respectively. It is evident that, after
9



Figure S3: Average RRMSE and EM computation time for different K in Scenario I.

a substantial number of iterations, the EM algorithm provides parameter estimates for the

two datasets, with each parameter achieving convergence.

S6 Online code description

The online code repository related to this paper can be found on GitHub1. The repository

is structured into three primary directories, each designed for specific functions as outlined

below:

• case: This directory includes:

– “Fatigue-crack-size.xlsx” dataset, originally introduced in Meeker et al. (2022)

and further processed as described in Appendix H of Fang et al. (2022).

– “crack.R” script, which performs parameter estimation across various models and

calculates their respective AIC.

– “results” folder, where the final analytical outputs are stored.

1https://github.com/liangliangzhuang/multi-rIG
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Figure S4: Iteration diagram of EM algorithm parameter estimation under different scenarios for PMB data.
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Figure S5: Iteration diagram of EM algorithm parameter estimation under different scenarios for fatigue

crack-size data.
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• simulation: “Integral_appr.R”: the primary R script for replicating Figure 2 in the

paper. This script evaluates the efficacy of various numerical integration techniques

in approximating the CDF of failure time.

• utility: This directory contains a collection of essential functions for computational

analysis:

– “appr.R”: Functions for numerical integration approximation methods.

– “em.R”: Functions related to the EM algorithm.

– “fct.R”: A collection of auxiliary functions regularly employed throughout the

analyses.

For optimal interaction with these resources, it is recommended to open “multi-rIG.Rproj”

using RStudio2, install all necessary packages as initially specified, and proceed to execute

the code sequentially, section by section.

2https://posit.co/download/rstudio-desktop/
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