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Abstract

In industrial manufacturing, predicting the remaining useful life of machines is crucial for
improving operational efficiency and reducing maintenance costs. However, data privacy
concerns and commercial competition make traditional centralized data collection methods
insufficient to meet these needs. Federated learning offers a decentralized training approach
that protects data privacy, but existing research faces challenges such as inadequate per-
formance of single models, data quality disparities, and improper client selection strategies.
To address these issues, this study proposes an adaptive sampling-based ensemble feder-
ated learning framework. By integrating the predictions of multiple models, the framework
reduces model errors and enhances prediction accuracy and generalization capability. Addi-
tionally, we design an adaptive sampling method that dynamically adjusts the client selection
strategy based on data quality, focusing on clients with low-quality data to ensure that their
contributions are effectively utilized. Experimental results show that the proposed frame-
work significantly outperforms existing benchmark methods on the turbofan engine dataset,
with a 12% reduction in RMSE and a 35% decrease in Score. Ablation experiments and sen-
sitivity analysis confirm that the framework maintains reliable predictive performance and
efficiency in dealing with issues such as data imbalance, missing data, and scale changes.
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1. Introduction

Given the increasing complexity and integration of large-scale industrial systems, en-
suring the secure and stable operation of systems is crucial in the era of Industry 4.0 [1].
Prognostics and health management (PHM) technology have emerged as a significant solu-
tion, attracting extensive attention from researchers and engineers. Predicting the remaining
useful life (RUL) of complex systems is a key aspect of PHM, and accurate RUL predictions
contribute significantly to proactive maintenance planning, minimizing unforeseen failures,
and reducing operational costs [2].

In the realm of RUL prognostics, three primary methodologies are utilized: 1) physics-
based methods, 2) data-driven methods, and 3) hybrid methods [3]. Among them, data-
driven methods leverage monitoring data to comprehend system degradation trends and
extract valuable insights without relying on expert experience [4]. Deep learning (DL)
gained significant attention in recent years, particularly in the prognostic domain. DL can
effectively employ multi-layered neural networks to autonomously learn intricate representa-
tions from data, demonstrating particular prowess in handling complex tasks [5, 6]. Soualhi
et al. [7] proposed an RNN-based RUL prediction approach combining direct and recursive
methods to address diagnostic uncertainty, demonstrated on a subway door system under
varying degradation scenarios and operational conditions. This method is highly adaptive
to different degradation scenarios and operational conditions, but its generalization ability
is limited, and the prediction accuracy may decline when confronted with new or unseen
degradation patterns. Peng et al. [8] proposed a Bayesian DL-based health prognostics
method that enhances prediction accuracy through uncertainty quantification. Its effective-
ness was validated using datasets from rolling bearings and turbofan engines. This method’s
advantage lies in its ability to quantify uncertainty, thereby enhancing the reliability of pre-
dictions. However, its main limitation is the high demand for quality data, which restricts
its applicability in data-scarce scenarios. Xu et al. [9] developed a hybrid deep learning
model integrating handcrafted features, domain knowledge, and latent features extracted
via DL networks to improve early RUL prediction accuracy. Although this method improves
accuracy, its limited generalization ability and high computational complexity remain chal-
lenges, particularly when dealing with new degradation patterns or incomplete data, where
its performance may degrade. Table 1 provides a comparative summary of existing RUL
prediction methods. Further advancements in DL-based prognostics can be found in studies
like [10, 11, 12, 13, 14, 15, 16].
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Table 1: Comparative Analysis of RUL Prediction Methods under Centralized Learning Pattern.

Method Type Model Dataset Strengths Weaknesses

[17] PB Finite element Bearing Strong interpretability High complexity

[18] DD-SM Stochastic process Battery Uncertainty modeling Strong assumptions

[7] DD-DL RNN Servomotor Diversity adaptation Limited generalization

[8] DD-DL BDL Bearing, engine Uncertainty modeling High-quality data

[9] Hybrid CNN with knowledge Battery Improved accuracy Limited generalization

Note: “PB” means physics-based”; “DD” means “data-driven”; “SM” means “statistical model”; “DL”
means “deep learning”.

Data-driven prognostic approaches have shown promising results, but they heavily de-
pend on high-quality training data, which is often scarce in industrial settings. The limited
availability of run-to-failure data and the high labor and costs associated with independent
model development further exacerbate the issue. Additionally, while companies use simi-
lar machinery, data aggregation is hindered by concerns over trade secrets and conflicts of
interest, creating what is known as the isolated data island problem [19]. This dispersal
of data makes centralized model training impractical. Decentralized approaches like fed-
erated learning (FL) [20] offer a solution by enabling collaborative model training across
multiple local clients while preserving data privacy. With increasing concerns over security
and privacy, FL has gained traction in fields such as financial security, manufacturing, and
healthcare [20, 21].

In recent years, an increasing number of scholars have been applying FL methods to
RUL prediction [22, 23]. Table 2 summarizes key FL approaches in this domain, highlight-
ing their strengths and weaknesses. For example, Zhang et al. [24] proposed a novel FL
framework for predicting wind turbine blade icing, integrating human expertise in feature
selection, and a method for addressing class imbalance. The framework demonstrates strong
robustness and convergence under significant data heterogeneity, but its reliance on a single
deep learning model limits its adaptability. Guo et al. [25] proposed an FL approach for
estimating the lifespan of milling cutters. In this method, the cloud server assigns weights
to each client based on the convolutional autoencoder (CAE) reconstruction error, while
the prediction model is centrally trained by the server. This approach reduces computa-
tional burden on edge devices, but its dependence on a single CAE architecture limits its
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applicability across diverse operational scenarios. Du et al. [26] developed a lightweight FL
model utilizing a transformer encoder, achieving minimal prediction errors. By omitting
the decoder module, the model reduces computational and memory overhead; however, its
aggregation performance may degrade when faced with highly data distribution imbalances.
Kamei and Taghipour [16] applied the FL framework to predict the RUL of turbofan en-
gine data and conducted a comprehensive comparison of its predictive performance with
centralized learning methods. The method utilizes LSTM and Transformer, demonstrating
strong predictive performance. However, the simplistic sampling and aggregation strate-
gies may limit the model’s generalization ability, particularly when dealing with imbalanced
or missing data. Zhang et al. [27] developed an FL-based multi-hop graph pool adver-
sarial network for RUL prediction, applied to turbine engines and bearing datasets. The
method demonstrates good robustness when handling data from different sources. However,
its multi-module design increases computational and storage demands, limiting its applica-
tion on resource-constrained devices. While the aforementioned studies on FL have made
valuable contributions, they also exhibit several common shortcomings:

(i) Limitations of single models: These models rely on a single DL approach for
RUL prediction within the FL framework. However, their practicality is limited under
complex industrial conditions [28]. Key issues include: i) Difficulty in adapting to
diverse operating conditions in industrial systems, such as temperature fluctuations,
humidity changes, and load variations [29]. This lack of adaptability to changing
conditions may lead to a decline in model performance. ii) Sensitivity to noise and
missing data, which can cause the model to become unstable when handling real-world
industrial environmental data [30, 31].

(ii) Limitations of data quality and client selection: Variations in data sources or col-
lection methods result in significant disparities in data quality and availability among
clients. Most works in Table 1 use a strategy that involves all clients in each train-
ing round, ensuring data diversity but also leading to high communication overhead
and computational cost. More importantly, these methods often neglect dynamic ad-
justments based on client data quality, thereby failing to optimize the training process
effectively. Thus, more efficient client selection strategies are needed to reduce training
time while maintaining accuracy.
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Table 2: Comparative analysis of FL methods in RUL prediction.

Method Data handling Model FL strategy Strengths Weaknesses Dataset

[24] Oversampling
to alleviate
class imbal-
ance

LSTM, CNN Randomly se-
lect 50% clients;
weighted aggrega-
tion by data size,
timestamp

Improved ro-
bustness and
convergence under
data heterogeneity

Single model Wind tur-
bine

[25] Multi-scale
learning, self-
attention

Convolutional
autoencoder

All clients;
weighted aggre-
gation based on
validation

Lightweight client-
side computation;
reduces edge load

Single CAE model Milling
cutter，
XJTU
bearing

[26] Sliding win-
dow, multi-
head self-
attention

Transformer
encoder,
FFN

All clients; FedAvg
with weighted ag-
gregation based on
data volume

Reduced overhead
with simplified
decoder, suitable
for resource-
constrained devices

Data distribution
imbalances may
impact aggregation
effectiveness

C-MAPSS
engine

[16] None LSTM,
Transformer

All clients; FedAvg,
FedProx

Transformer frame-
work for RUL pre-
diction

Simple aggre-
gation; limited
generalization

C-MAPSS
engine

[27] Multi-hop
graph pooling

GNN, adver-
sarial trans-
fer learning

All clients; dy-
namic weighted
aggregation by loss

Reduces domain
shift via adversar-
ial learning

High computation
and storage de-
mand

C-MAPSS
engine,
XJTU
bearing
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Table 3: Comparison of recent FL-based methods.

Method Client selection Training model Applicaiton

Zhang et al. [24] Random Single RUL prediction

Guo et al. [25], Du et al. [26], Kamei
and Taghipour [16], Zhang et al. [27]

All Single RUL prediction

Wang et al. [32] Random Ensemble Decision optimization

Shi et al. [33] All Ensemble Classification tasks

AS-EFL Adaptive Ensemble RUL prediction

To address the aforementioned limitations, we propose a novel FL approach for RUL
prediction. The key contributions and innovations are as follows: First, we introduce an
adaptive sampling-based ensemble FL approach, named AS-EFL, designed to handle data
quality variance among clients and the instability of single-model predictions under complex
conditions. Table 3 compares recent FL-based methods. To the best of our knowledge,
this is the first study to integrate adaptive sampling (AS) and ensemble algorithms into FL
for RUL prediction. Specifically, we employ ensemble learning to stabilize model perfor-
mance in the presence of noise and missing data, effectively combining global information
to enhance accuracy and generalization. This ensemble approach can be used with any
FL strategy without altering the aggregation of global models. This concept has been suc-
cessfully applied to decision optimization [32] and classification tasks [33] within the FL
framework. Additionally, we propose the AS method to address the second limitation of
FL. The AS module dynamically focuses on clients with poorer data quality, ensuring their
contributions are effectively utilized. Furthermore, we apply the proposed model to a turbo-
fan engine dataset and conduct a case study. Comparative analysis with several benchmark
strategies confirms the superior performance of our method in predicting RUL.

The remainder of the paper is structured as follows: Section 2 introduces the AS-
EFL framework for RUL prediction, providing detailed insights along with the algorithmic
workflow of the proposed model. Section 3 presents a comprehensive case study to validate
the proposed methodology. Finally, Section 4 concludes the paper with a summary of our
findings.

6



Figure 1: Proposed AS-EFL framework for RUL prediction.

2. AS-EFL framework for RUL prediction

In this section, we first introduce the AS-EFL framework for RUL prediction. Suppose
we have N clients, the private data set of the k-th client is denoted as Dk = {(xk

i , y
k
i )}

nk
i=1,

where nk is the number of test systems in the k-th client. Each client’s dataset con-
tains condition monitoring (CM) data xk = {xk

1, . . . ,x
k
nk
}, and corresponding RUL, yk =

{yk1 , . . . , yknk
}. To protect client privacy, we assume that local private datasets are not ac-

cessible between different clients. Our objective is to construct a global predictive model
y = F (x;θ), where θ represents the parameters within the FL framework without explicitly
centralizing the dataset D = {Dk, k = 1, 2, · · · , N}.

The proposed RUL prognostic framework consists of training and test phases (Figure
1). During the training stage, efforts are devoted to developing a global model—utilizing
run-to-failure data from each client—to map historical CM data to RUL. To achieve this
objective, following the preprocessing of the collected CM data on each client, an AS-based
EFL model is trained on the server for RUL prediction. Firstly, we introduce the traditional
FL algorithm for decentralized training (see Section 2.1), and emphasize the problems of
FL in RUL prediction. To address the instability of single-model prediction, we utilize
ensemble learning to aggregate the outputs of multiple DL networks, resulting in the final
trained model (see Section 2.2). To mitigate the poor aggregation performance and long
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training times of traditional FL, we select client data adaptively based on its quality (see
Section 2.3). At the test phase, current CM data {x̃1, . . . , x̃N} is collected from each client.
Following pre-processing, the selected data are inputted into the trained network for RUL
prediction on each client.

2.1. Federated learning

Figure 2 depicts the comprehensive architecture of an FL scheme, comprising local
clients and a cloud server. The key steps of FL are as follows: initially, local clients train
their models using training CM data obtained from sensors. Subsequently, these local models
are updated to the server and aggregated to construct a global model. Then, the aggregated
global model, along with parameters, is distributed to all clients for their own tasks. Repeat
the above steps until predefined termination criteria are met (e.g., reaching maximum itera-
tion count or model accuracy exceeding a threshold). The central server aggregates updates
and ultimately determines the global model.

Figure 2: Illustration of the FL scheme: decentralized model training and aggregation process.

Specifically, the learning process of FL is driven by minimizing the global loss function,
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which is calculated on each client using a weighted aggregation method:

min
θ

F (θ) =
N∑
k=1

pkFk(θ) = E [Fk(θ)] , (1)

where pk is the probability/weight of the k-th client proportional to the local data size nk,
i.e., pk = nk/n, where n is the total data size across all clients n =

∑N
k=1 = nk. It verifies

pk ≥ 0 and
∑N

k=1 pk = 1. Clearly, if all clients have the same dataset size ni, objective
(1) reduces to minθ F (θ) = 1/N

∑N
i=1 Fk(θ). Here, Fk(θ) represents the local loss function,

defined as

Fk(θ) = Exk

[
fk

(
θ;xk

)]
=

nk∑
i=1

fk
(
θ;xk

i

)
, (2)

where fk(θ;x) is the loss incurred by predicting on sample x using model θ at client k.
FL attempts to mitigate the average risk of clients by facilitating independent risk function
calculation for each client, unlike traditional centralized approaches, thus eliminating the
need for data aggregation [34].

Commonly used FL algorithms include federated averaging (FedAvg) and federated
proximal term (FedProx). The advantage of these algorithms lies in their ability to effec-
tively coordinate model updates from various devices while preserving data privacy, thereby
improving the performance and reliability of the global model. These algorithms have been
widely applied in various fields such as healthcare [35], energy forecasting [19], and trans-
portation management [36]. Next, we will detail the training process of FL based on these
two algorithms. It constitutes the following steps:

Step 1: client selection and model broadcasting: the server randomly selects S clients
from N devices according to selection probabilities pk, and the corresponding subset is St.
Then, the server transmits the current global model θt during communication round t to
local clients. In the case of initial communication, the model assigned by the server is
denoted as θ0, which can be determined by the engineer.

Step 2: local training: for FedAvg algorithm, θt+1
k is calculated through multiple stochas-

tic gradient descent (SGD) iterations with learning rate η based on minimizing the loss
function:

θt+1
k ≈ arg min

θ

Fk(θ). (3)

However, when strong statistical heterogeneity is present, i.e. Fk is different than f , the
local model may converge to Fk and diverge from the global model f . To overcome this

9



Algorithm 1: The FL framework based on FedAvg or FedProx.
Input: D,θ0, T, η,N, S, and pk, k = 1, . . . , N .
Output: θ∗.

1 for t = 1 to T do
2 The server randomly selects a subset St, and sends θt to clients;
3 for k ∈ St do
4 Compute θt+1

k based on FedAvg (3) or FedProx (4);
5 Update θt+1

k to the server.
6 end
7 The server obtains θt+1 using (5);
8 end
9 Denote θ∗ = θT as the optimal model, and sends θ∗ to all clients.

problem, FedProx adds a regularization term based on (3) to keep the local model close to
the current model. The θt+1

k is obtained by

θt+1
k ≈ arg min

θ

{
Fk(θ) +

µ

2

∥∥θ − θt
∥∥2
}
, (4)

where µ is the proximal hyperparameter and needs to be determined.

Step 3: model updates and server aggregation: Then each selected user sends its
updated model to the server for aggregation:

θt+1 =
1

S

∑
k∈St

θt+1
k . (5)

Continue iterating through the aforementioned steps until the number of epochs reaches T .
At this point, the server broadcasts the optimal/final model θ∗ to all clients. Subsequently,
each local client conducts tasks like predicting RUL and formulating maintenance strategies
based on the latest CM data, utilizing the global model. The FL framework based on FedAvg
or FedProx is outlined in Algorithm 1.

2.2. Ensemble learning
Traditional FL methods primarily rely on a single deep learning approach for local

model training. However, their practicality may be limited under complex industrial con-
ditions. Ensemble learning, by fusing predictions from multiple models, effectively incorpo-
rates global information and improves prediction accuracy [37]. The underlying idea is that
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the errors of individual models can be compensated by others, thereby enhancing overall
predictive performance [31]. This approach has been successfully applied to RUL prediction
in studies such as [31] and [28]. Key considerations in this approach include the selection of
member models and the choice of fusion strategy.

2.2.1. Member predictor selection
We use DL methods to train CM data and build RUL prediction models. The commonly

used methods in RUL prediction are based on foundational network architectures such as:

• Convolutional neural network (CNN): It excels at capturing local and global fea-
tures within structured data. To adapt CNNs for time-series data, we utilize multi-
dimensional convolutional neural networks (DCNNs), which can effectively capture
local patterns and temporal dependencies [38, 39].

• Recurrent neural network (RNN): RNNs are designed to process sequence data. Their
improved variants, Long short-term memory (LSTM) and gated recurrent unit (GRU),
address issues like vanishing gradients and long-term dependencies. LSTM has stronger
memory capabilities, while GRU provides faster training with fewer parameters [40,
41].

These models are selected as member predictors for their complementary character-
istics in handling time-series data. While the ensemble approach increases computation
and communication overhead compared to single-model FL (as each client trains and sends
updates for multiple models), it can address challenges like data imbalance, missing data,
and noise, enhancing the global model’s generalization and stability. Note that engineers
can modify these models by adding layers or adjusting architectures to specific datasets or
domain knowledge, further improving adaptability.

2.2.2. Fusion strategy selection
After selecting the member predictors, ensemble learning methods fusion their pre-

dictions to generate the final output. For regression tasks like RUL prediction, weighted
averaging is commonly used. Instead of relying on computationally intensive statistical
methods like linear regression or ridge regression [31], we propose a dynamic weight adjust-
ment strategy based on a scoring function, which allows updates during FL iterations. In
this context, the scoring function evaluates each predictor’s performance on the local dataset
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during training. Suppose we use M predictors for RUL prediction. The scoring function for
the m-th predictor in the k-th client is defined as:

SCm,k =

nk∑
i=1

sm,i, where sm,i =

e−
dm,i
13 − 1, if dm,i < 0,

e
dm,i
10 − 1, if dm,i ≥ 0.

(6)

Here dm,i represents the difference between the estimated and actual RUL values for the i-th
instance. A smaller value indicates a better fit of the model. During each local training, we
first compute the SCm,k and then perform the following steps:

(i) Dynamic weight computation: the weights ωm,k for the m-th predictor on the k-th
client are calculated based on the inverse of the scoring function, as follows:

ωm,k =
1/SCm,k∑M

m=1 1/SCm,k

. (7)

These weights are normalized scores, ensuring that the contribution of each predic-
tor reflects its relative performance. Predictors with smaller SCm,k (indicating better
performance) will have higher weights in prediction fusion.

(ii) Weight update and fusion: In each communication round t, the model parameters
θt
m,k for all M predictors are uploaded from the k-th client to the server. The server

aggregates these parameters for each predictor m as:

θt
m =

1

S

∑
k∈St

θt
m,k, m = 1, . . . ,M. (8)

Notably, the local weights ωm,k remain on the client side and do not need to be trans-
mitted.

The above process is repeated until the stopping criterion is met. After training, the server
broadcasts the aggregated model parameters θ∗

m back to the clients. Upon receiving the final
global model parameters, each client fuses the predictions from its ensemble predictors using
the locally stored optimal weights ω∗

m,k. For a new dataset x̃k, the final RUL prediction is
computed as:

ŷkes =
M∑

m=1

ω∗
m,kŷ

k
m, (9)

where ŷkm is the prediction of the m-th predictor for the k-th client.
12



Figure 3 provides a visual overview of the proposed ensemble learning framework within
the FL context. The diagram illustrates how individual predictors operate independently
at the client level, their parameter aggregation at the server, and the final ensemble-based
prediction process using dynamically updated weights.

Figure 3: Ensemble framework based on FL for RUL prediction.

2.3. Adaptive sampling

In algorithm 1, the server selects a subset St of N clients in each communication round
according to a fixed probability pk. However, the fixed selection probability may not ade-
quately account for clients with poor data quality. To improve the global model’s perfor-
mance, more attention should be given to these clients to ensure they contribute meaning-
fully to the global model update. Based on this, we propose an adaptive sampling method
that dynamically updates the sampling probabilities ptm,k for each client after each commu-
nication round. Specifically, for the k-th client and m-th predictor, the sampling probability
pt+1
m,k is calculated as:

pt+1
m,k =

βt
m,k∑N

k=1 β
t
m,k

, where βt
m,k = exp

(
Φt

m,k

)
. (10)

Here βt
m,k is a client-specific weight, which is computed based on the performance metric

Φt
m,k. For example, we use either root mean square error (RMSE) or relative bias (RB) as

evaluation metrics, and their formulas are as follows:

RMSEt
m,k =

√∑nk

i=1 (dm,i)
2

nk

, or RBt
m,k =

1

nk

nk∑
i=1

dm,i. (11)
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Smaller values of RMSE or RB indicate lower error and bias in the client’s predictions.
With these performance metrics in place, the server can adaptively adjust the sampling
probabilities based on each client’s performance.

Figure 4: AS framework update process.

Next, we describe the adaptive update process of the AS strategy, as shown in Figure
4. In the first communication round, all clients participate in training with equal initial
sampling probabilities (p0m,k = 1). Each client trains its model based on local data, computes
model parameters θ0

m,k，and sends them to the server. The server aggregates the received
parameters and updates the global model parameters θ1

m, which are then redistributed to
all clients. Each client uses the updated global model to make predictions, computes the
corresponding performance metric (either RMSE1

m,k or RB1
m,k), and sends the results back

to the server. The server then updates the sampling probabilities p2m,k for the next round.
In subsequent rounds, S clients are selected for local model training based on the updated
probabilities. The other processes are similar to the first round, and we will not elaborate
further. This process is repeated until the predetermined number of communication rounds
is reached.

2.4. Computational complexity analysis

The AS-EFL framework for RUL prediction is implemented as outlined in Algorithm
2. In each round t, the server selects S clients based on their sampling probability ptk. Each
selected client then updates M models locally, with the update complexity of O(u) per
model. Therefore, the total complexity for each client in one round is O(SMu). After local
updates, the clients upload their M model parameters (dimension d) for aggregation, which
has a complexity of O(SMd). The server then distributes the aggregated parameters to all
N clients, with a complexity of O(Nd). Each client computes and uploads the evaluation
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matrix based on the aggregated parameters θt
m, with a complexity of O(NMv). The server

updates the sampling probabilities pt+1
m,k and distributes them to the clients, which has a

complexity of O(NM). Therefore, the total time complexity for one round is O(SMu +

SMd+Nd+NMv +NM).
Regarding space complexity, each client needs to store M models, each with parameters

of dimension d, resulting in a storage complexity of O(Md) per client. For all N clients, the
total storage complexity is O(NMd). Additionally, each client stores its own data, with the
total storage for all clients being O

(∑N
k=1 ςk

)
, where ςk denotes the data size of client k. On

the server, the storage for aggregated parameters is O(Md), and for sampling probabilities, it
is O(NM). Thus, the total space complexity of the system is O(NMd+

∑N
k=1 ςk+Md+NM).

Section 3.6.3 will present real-data experimental results and evaluate the computational
efficiency at different data scales.

3. Experimental study

In this section, the proposed AS-EFL method is applied to a turbofan engine dataset.
Section 3.1 provides an overview of the dataset and the preprocessing techniques applied.
Section 3.2 introduces several benchmark models and outlines the experimental setup. Sec-
tion 3.3 presents the implementation process of the proposed model. Section 3.4 compre-
hensively demonstrates the predictive accuracy of the proposed model compared to the
other benchmark models. Sections 3.5 and 3.6 provide the results of the ablation study and
sensitivity analysis, respectively.

3.1. Dataset description and preprocessing

We validate the effectiveness of the AS-EFL framework for RUL prediction using the
well-known C-MAPSS dataset [42]. This dataset is generated within a MATLAB-Simulink
virtual environment from the NASA Ames Prognostics Center of Excellence. For our study,
we use the “FD001” sub-dataset, which contains CM data from 100 engines operated under
the same conditions and a single fault mode. The CM data from 100 engines running until
failure are designated as the training dataset, while the CM data from the remaining 100
operational engines are used as the test dataset.

These CM data comprise 21 sensor-acquired measurements, with some sensor data
exhibiting minimal variation and offering negligible contributions to RUL prediction. To
enhance computational efficiency and reduce training time, these features are eliminated.
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Algorithm 2: The AS-EFL framework for RUL prediction.
Input: D,θ0

m, T, η,N,M, S, x̃k, and p0m,k, k = 1, . . . , N .
Output: θ∗

m, ω
∗
m,k, ŷ

k
es,m = 1, . . . ,M , and k = 1, . . . , N .

1 for t = 1 to T do
2 The server selects St clients based on ptk, and sends θt

m to clients.
3 for k ∈ St do
4 for m = 1 to M do
5 Calculate θt+1

m,k based on (3) or (4), and update it to server;
6 end
7 end
8 The server obtain θt+1

m using (8) and sends it to clients.
9 for k = 1 to N do

10 for m = 1 to M do
11 Based on θt+1

m , compute RMSEt
m,k or RBt

m,k using (11), and send to
server.

12 end
13 end
14 Update and save sampling probability pt+1

m,k using (10);
15 end
16 Denote θ∗

m = θT
m, and send well-trained model θ∗

m to all clients;
17 Denote ω∗

m,k = ωT
m,k,m = 1, . . . ,M , and k = 1, . . . , N ;

18 Based on the well-trained model, calculate ŷkes based on new CM data x̃k with (9).

Following the approach in Li et al. [38], 14 sensor measurements, indexed as 2, 3, 4, 7, 8, 9,
11, 12, 13, 14, 15, 17, 20, and 21, are used as the original input features. The CM data from
each sensor undergo normalization to fall within the range of [−1, 1], achieved through the
min-max normalization method. To augment the training dataset, a sliding time window
approach is adopted [43]. By comparing the model’s predictive performance with different
window sizes (detailed results are provided in Supplementary Section S1), we find that a
window size of 30 produced the best results. Therefore, 30 consecutive points are selected as
the input sample size for the proposed model. For label rectification, a linear RUL function
with a maximum value of 125 is applied to each training sample [44, 38].

To simulate the FL scenario, we randomly partition 100 engines into different clients,
16



assuming no communication between these clients. We consider three scenarios with different
numbers of clients, denoted as N = 3, 5, or 8, aiming to distribute an equal number of test
engines to each client whenever possible [26, 16]. Additionally, in Section 3.6.1, we also
investigate scenarios where there are substantial differences in sample sizes among clients
and compare the predictive performance of different models. We consider two commonly
used FL algorithms, namely FedAvg and FedProx, with hyperparameter settings detailed
in Table 4. The choice of hyperparameters is based on balancing model performance and
computational efficiency. Batch size is set to 64 or 128 depending on the client capacity, with
64 providing a good trade-off between stability and efficiency, while 128 is used for larger
client configurations to speed up convergence. Epochs represents the number of iterations
conducted by each local client during model training and is set to 50 or 80 to ensure sufficient
training without overfitting. T is the number of communication rounds, chosen as 5 or 8 to
balance communication cost and convergence speed. For µ in FedProx, a value of 0.01 is
selected to mitigate the impact of non-IID data without over-regularizing the model.

Figure 5: Engine allocation per client across three scenarios, with numbers in blue boxes indicating the
number of engines.

3.2. Experiment settings and benchmark model
To illustrate the performance of the AS-EFL-based RUL prognostic method, we consider

three categories of benchmark models:

(i) Baseline model: This model assumes that data among different clients is indepen-
dent, with each client conducting model training and test locally. This approach is
common in industries [7, 8, 9], while it mitigates the risk of data leakage, the limited
quantity and quality of data often lead to suboptimal outcomes.

(ii) Classical FL model: This model is adapted from Kamei and Taghipour [16], who
applied a classic FL model (based on FedAvg and FedProx) similar to algorithm 1
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Table 4: Hyperparameter configurations and FL algorithm combinations.

Algorithm N Batch size Epoch T µ

FedAvg

3 128 50 5 -

5 64 50 8 -

8 64 50 8 -

FedProx

3 128 80 5 0.01

5 64 80 5 0.01

8 64 120 5 0.01

for RUL prediction. Three classic neural networks (DCNN, LSTM, and GRU) are
utilized for local client training, and their corresponding FL models are represented as
FL-DCNN, FL-LSTM, and FL-GRU, respectively.

(iii) AS-FL model: This model is based on the proposed adaptive sampling approach,
combined with a classical FL framework. During sampling, the model emphasizes
repeatedly iterating over data with lower quality to improve prediction accuracy.

(iv) EFL model: This model applies ensemble algorithms from Section 2.2 to the classical
FL approach. During each communication round, datasets from all clients are selected
for model training and updating on the server. This framework is similar to the
methods in [32, 33], but they have not been applied to RUL prediction.

For a fair comparison, all models employ the same network architecture and hyper-
parameters for model local training. The network architecture and parameter settings of
the three local client training networks are as follows: i) The DCNN model consists of four
convolutional layers and two fully connected layers, with each convolutional layer config-
ured with 10 output channels. The first three layers employ 10× 1 convolutional kernels to
capture global features, while the fourth layer utilizes 3× 1 convolutional kernels to extract
local features. The tanh activation function is applied after all convolutional layers and the
first fully connected layer. A dropout rate of 0.5 is set between fully connected layers to
prevent overfitting. ii) The GRU model is configured with three GRU layers, each followed
by a dropout rate of 0.2. The first layer comprises 128 units, the second layer comprises 64
units, and the third layer comprises 32 units. Following data processing, the output passes
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through a fully connected layer with ReLU activation function. iii) The LSTM model is sim-
ilar to the GRU model, with GRU units replaced by LSTM units. Training parameters for
these three models, including batch size and number of epochs, are detailed in Table 4. All
models utilize a uniform learning rate of 0.001 for parameter estimation until the specified
number of epochs is reached. The reported experimental results are averaged by 5 trials to
reduce the effect of randomness. All the experiments are conducted on a computer with a
2.10 GHz Intel Xeon Gold 5318Y CPU, 14 GB RAM, and NVIDIA A16 GPU, utilizing the
PyTorch and Scikit-learn libraries in Python.

3.3. Implementation process of proposed model

First, we begin by outlining the implementation process of the proposed model based on
Algorithm 2, assuming 5 clients and using the FedProx algorithm for the FL method. The
local model consists of three sub-models: LSTM, GRU, and DCNN. For the pre-processed
CM data from each client, we train the model using the proposed AS-EFL approach. Table
5 illustrates the dynamic variations in sampling probabilities and model weights during
adaptive sampling and ensemble learning. Specifically, in the first round, the sampling
probabilities for all clients are set to 1. After performing ensemble learning locally, each
client calculates the Score and weight of its models (e.g., in Round 1, the weights of the
three base models for Client 1 are 0.127, 0.124, and 0.749). The model parameters are then
transmitted to the server. After aggregation, new model parameters θ1

m for m = 1, 2, 3 are
obtained and distributed to each client. The performance metrics of the different models
are computed using the new model parameters and sent back to the server. The server then
calculates the sampling probabilities for the next round (e.g., in Round 1, the p1k values
for 5 clients using the LSTM model are: 0.0042, 0.0147, 0.0001, 0.9805, and 0.0006). In
Round 2, three clients are selected based on the probabilities p1k (e.g., Clients 1, 4, and 5
are selected for the LSTM model), and only these clients undergo local ensemble learning
training, followed by similar steps as in the previous round. This process continues until
the number of training rounds reaches the threshold (e.g., Round 8). Then, based on the
trained model, we perform RUL prediction on the CM data from the test set within each
respective local client.
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Table 5: Probabilities and model weights per round in adaptive sampling and ensemble learning, where (✓)

indicates the selected client for training, (×) indicates the client is not selected.

Epoch Client 1 Client 2 Client 3 Client 4 Client 5

T1

LSTM 0.127(✓) 0.122(✓) 0.151(✓) 0.113(✓) 0.136(✓)

GRU 0.124(✓) 0.119(✓) 0.147(✓) 0.110(✓) 0.133(✓)

DCNN 0.749(✓) 0.759(✓) 0.702(✓) 0.777(✓) 0.731(✓)

T2

LSTM 0.325(✓) 0.278(×) 0.427(×) 0.351(✓) 0.298(✓)

GRU 0.361(✓) 0.321(✓) 0.498(×) 0.410(✓) 0.298(×)

DCNN 0.314(✓) 0.401(×) 0.075(×) 0.239(✓) 0.365(✓)

...
...

...
...

...
...

...

T8

LSTM 0.410(×) 0.331(✓) 0.244(×) 0.215(✓) 0.363(✓)

GRU 0.200(✓) 0.392(×) 0.344(✓) 0.393(×) 0.261(✓)

DCNN 0.391(✓) 0.277(×) 0.412(✓) 0.392(×) 0.377(✓)

3.4. Prognostic performance comparison
3.4.1. Prognostic performance of proposed model

To evaluate the predictive performance of different models, we use Score and RMSE
as evaluation metrics [45, 46]. Their calculation formulas are similar to (6) and (11), with
dm,i replaced by d̃i,k = ŷi,k − yi,k and sm,i replaced by s̃i,k, applied across all clients. Here,
ŷi,k represents the predicted RUL value for the i-th system under k-th client. The specific
formulas are as follows:

S̃C =
N∑
k=1

nk∑
i=1

s̃i,k, and R̃MSE =

√√√√∑N
k=1

∑nk

i=1 d̃
2
i,k∑N

k=1 nk

. (12)

First, we present the predictive trajectory performance of the proposed model for each
engine across different numbers of clients. For Classical FL and Baseline models, we utilize
the LSTM model, whereas for the proposed models, we employ three distinct model predic-
tors (M = 3) for local client training. Due to space constraints and similar conclusions, we
randomly select test engine units from different clients as examples. Figure 6 illustrates the
RUL prediction trajectories of these four engines under the FedProx algorithm. Compared
to the Baseline model, the proposed AS-EFL model demonstrates better prediction accu-
racy for these engines, particularly in regions with lower RUL values. This indicates that as
CM data is continuously acquired and as engine units approach failure, fault characteristics
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(a) Test engine unit #15 in client 2 (b) Test engine unit #35 in client 2

(c) Test engine unit #81 in client 3 (d) Test engine unit #100 in client 5

Figure 6: RUL estimation for four test engine units based on five clients in the FedProx algorithm.

become more pronounced and are effectively captured by the model to enhance prediction
accuracy. Despite some prediction biases, the model performs particularly well in predicting
accurately when the engine units are nearing failure.

Additionally, we provide the RUL prediction results for all test engines under their
respective last recorded cycle, based on five clients in the FedProx algorithm, as shown in
Figure 7. From the graph, it is evident that the performance of the proposed model is
significantly better than that of the Baseline model. The average RMSE for each client
is as follows: for the proposed model, it is (2.06, 2.98, 3.42, 2.35), while for the baseline
model, it is (4.66, 12.90, 8.40, 5.47). The poor performance of the Baseline method across
all test clients exposes the limitation of relying on independently created prediction models
by clients, mainly attributed to the relatively limited amount of data available from each
client, resulting in limited predictive outcomes for RUL prediction of individual test engines.
On the other hand, the proposed AS-EFL model, while ensuring data privacy, can combine
information from other clients to provide more accurate RUL prediction results. Note that
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the graph also shows instances of poor predictive performance for certain engines (e.g.,
units #15 in Figure 6(a), #27, #45, and #95). This is mainly due to the short recorded
cycles of these engines, which provide limited degradation trend information, resulting in
larger prediction errors. We expect that as the operating cycles increase, the predictive
performance of the proposed model for these engines will improve, as shown in Figure 6(b)-
6(d).

Figure 7: RUL prediction results for all test engines under their respective last recorded cycle.

3.4.2. Comparison with other methods
In this section, we compare the proposed AS-EFL model with other state-of-the-art

methods, as summarized in Table 6. Compared to centralized learning, FL offers the ad-
vantage of privacy protection, as only model updates are shared, not the data. Despite
this, AS-EFL achieves comparable predictive performance to traditional centralized models
like MCLSTM and Auto-Encoder, demonstrating that it can maintain high accuracy while
protecting privacy. Compared to other FL models, the AS-EFL model significantly outper-
forms Fed-LSTM [16], emphasizing the advantages of combining AS and ensemble learning.

3.5. Ablation study
Section 3.5.1 evaluates the performance of various models under different client numbers

and algorithms. Two ablation studies in Sections 3.5.2 and 3.5.3 further assess the impact
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Table 6: Comparison of evaluation metrics with other methods.

Pattern Method RMSE Score

Centralized

Auto-Encoder [10] 13.58 228.00

MCLSTM [11] 13.70 315.00

ANN-EA [12] 14.24 -

GA-RBM-LSTM [13] 12.60 273.70

BiLSTM-ED [14] 14.70 273.00

GHDR [15] 11.58 281.65

Decentralized
Fed-LSTM [16] 15.24 304.80

AS-EFL 13.25 265.81

of individual modules on the proposed model’s performance.

3.5.1. Overall performance evaluation
First, we present the average predictive performance results of different models under

varying numbers of clients, as shown in Table 7. It can be observed that AS-EFL consistently
achieves the lowest RMSE and score across all comparisons. Compared to traditional FL
methods, AS-EFL reduces RMSE by an average of approximately 15.6% and the score by
48.6%, highlighting its advantages in optimizing model performance. Moreover, integrating
individual modules into FL methods can enhance predictive performance. For instance,
AS-FL reduces RMSE by approximately 11.3% and the score by 32.3%, while EFL reduces
RMSE by 12.8% and the score by 39.8%.

3.5.2. Improvement through ensemble learning on FL framework
We analyze the impact of ensemble learning on RUL prediction within the FL frame-

work for both M = 2 and M = 3 scenarios. In the M = 2 setting, three combinations
are considered: a) LSTM with GRU, b) LSTM with DCNN, and c) GRU with DCNN.
For M = 3, the combination includes LSTM, GRU, and DCNN. Figure 8 illustrates the
RUL prediction results for different EFL model combinations using the FedProx algorithm.
We can see that in experiments with 8 clients, the GRU and DCNN combination slightly
outperforms the M = 3 model in RMSE. However, the M = 3 model consistently achieves
higher predictive accuracy in other settings. Notably, any two-model combination surpasses
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Table 7: Average predictive performance results of different models under varying numbers of clients.

Algorithm Model
RMSE Score

N = 3 N = 5 N = 8 N = 3 N = 5 N = 8

Baseline 19.53 19.11 20.61 1112.36 967.38 1053.45

FedAvg

FL 16.35 16.59 16.52 526.09 509.09 523.58

AS-FL 14.79 14.59 15.36 365.35 343.81 392.42

EFL 14.34 14.68 14.48 276.98 309.14 348.52

AS-EFL 13.87 13.25 13.67 278.63 265.81 293.75

FedProx

FL 16.27 16.46 16.79 533.61 492.13 499.22

AS-FL 14.72 14.95 15.62 351.66 359.05 419.16

EFL 14.27 14.89 14.79 314.68 331.27 349.03

AS-EFL 13.29 13.62 13.95 283.52 279.48 292.13

classical FL models with a single model (e.g., FL-DCNN, FL-LSTM, FL-GRU), highlighting
ensemble learning’s ability to integrate features from multiple models, mitigate individual
predictive limitations.

Figure 8: RUL prediction results based on different combinations of EFL model.

3.5.3. Improvement through adaptive sampling on EFL framework
We evaluate the impact of different communication rounds T and the proportion of

selected clients qt = St/N on RUL prediction accuracy, as well as the corresponding error
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distribution (see Figure 9). Additionally, we calculate the total training time for all clients
under the FL framework. The results show that the AS-EFL model consistently outperforms
the EFL model across all experiments, with particularly significant improvements observed
at qt = 60%. Under the same qt, T = 5 achieves better predictive accuracy, while at the same
T , qt = 60% performs better than qt = 80%. The slight errors observed can be attributed
to model design factors, such as parameter changes across training rounds, which introduce
minor deviations. However, these errors remain within an acceptable range, and the overall
performance of the model is stable. Beyond accuracy improvements, the AS-EFL model
also significantly reduces training time, achieving a reduction of approximately 20% to 40%
compared to the EFL model. This efficiency gain is primarily attributed to the AS training
module, which optimizes client selection strategies, reducing unnecessary computations and
accelerating the model’s progression. The impact of more extreme sampling frequencies on
prediction performance can be found in Supplementary Section S2.

(a) FD001 with qt = 60% (b) FD001 with qt = 80%

Figure 9: Impact of different T and qt values on RMSE and training time in the FedProx algorithm when
N = 5.

3.6. Sensitivity analysis

This section extends the proposed model to more practical scenarios, such as data
imbalance (see Section 3.6.1), missing data (see Section 3.6.2), and scale variation (see
Section 3.6.3), evaluating the model’s estimation performance and efficiency. Additionally,
we provide performance results for long-term predictions (see Supplementary Section S3).
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3.6.1. Effect of data imbalance
In industry, data imbalance often arises from varying data volumes across clients. For

instance, one client may have data from 10 engines, while another has data from 50. This
imbalance can affect FL model training, as clients with larger data volumes may dominate
the global model, neglecting smaller clients’ contributions. This issue is common in fields
such as manufacturing process optimization and medical data analysis. To address this, we
design an imbalanced data partitioning scheme to evaluate the model’s performance. For
N = 5, we sample two data partitioning schemes: (a) Scheme 1: Five clients with data from
10, 15, 20, 25, and 30 engines. (b) Scheme 2: Five clients with data from 5, 10, 15, 20, and
50 engines.

Table 8 shows the RUL prediction results of the proposed model under two schemes.
The results indicate that AS-EFL consistently achieves better accuracy. For example, in
Scheme 2, AS-EFL’s RMSE is 14.4% lower and Score 42.0% lower than the traditional
FL model, demonstrating better adaptation to data distribution differences. The main
reason is that traditional FL struggles with controlling client participation, allowing clients
with larger datasets to dominate the global model, while clients with smaller datasets are
often overlooked, potentially reducing prediction accuracy. In contrast, the AS module
dynamically focuses on clients with poorer data quality, ensuring their contributions are
effectively utilized in training, while the EFL module integrates features from multiple global
models, further enhancing the model’s generalization and robustness.

Table 8: Comparison of RUL prediction with other models under imbalanced data.

Algorithm Model
RMSE Score

Scheme 1 Scheme 2 Scheme 1 Scheme 2

Baseline 20.93 19.78 1162.75 1054.32

FedAvg

FL 16.70 16.12 479.93 468.12

EFL 14.83 14.48 336.78 315.06

AS-EFL 13.91 13.89 303.39 287.15

FedProx

FL 16.63 16.16 521.65 513.33

EFL 14.42 14.26 323.24 291.05

AS-EFL 13.80 13.73 308.15 280.18
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3.6.2. Effect of missing data
Data missing is a common issue in industrial applications, often caused by sensor failures

or network problems. To simulate this, we randomly deleted a percentage of data (including
both training and testing sets) in rows (cycles) to evaluate the model’s performance under
missing data conditions. Table 9 shows the impact of different data missing percentages
on Client 1’s performance under the FedAvg framework (N = 5). The results show that
with low to moderate data missing (e.g., 10% and 15%), the proposed model maintains
good accuracy. For instance, with 10% data missing, RMSE increases by only 5.2%, and the
Score shows almost no significant change. This is mainly due to the collaboration of ensemble
learning and adaptive sampling, which helps mitigate the negative impact of missing data.
However, when data missing increases to 25% or 30%, performance degradation becomes
more noticeable. For example, with 30% data missing, RMSE rises to 21.26, and the Score
increases to 143.58, due to reduced training data and disrupted time-series integrity.

To further address the impact of high data missing, we introduced two compensation
mechanisms: mean imputation and linear interpolation. With 30% missing data, mean
imputation resulted in RMSE of 17.49 and Score of 87.06, while linear interpolation gave
RMSE of 18.31 and Score of 94.27. Compared to no imputation (RMSE = 21.26, Score =
143.58), mean imputation reduced RMSE by 17.7% and Score by 39.4%, while linear inter-
polation reduced RMSE by 13.9% and Score by 34.3%. These results show that imputation
methods can significantly improve model performance in the presence of missing data.

Table 9: The impact of different data missing percentages on the prediction performance of Client 1.

Matrix
Missing percentages

0% 5% 10% 15% 20% 25% 30%

RMSE 16.67 17.28 17.54 18.67 18.87 20.70 21.26

Score 82.38 86.03 85.23 100.16 104.38 119.24 143.58

3.6.3. Effect of data scale
We analyze the proposed model’s scalability and resource requirements by varying the

number of clients. The data is divided into five clients, each containing 20 engines. Training
begins with one client and gradually increases to all clients, to assess the impact of client
and data size on prediction performance, and communication overhead. Table 10 shows the
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prediction performance and time overhead (average training, prediction, and communication
time) of client 1 under the FedAvg framework. The results are as follows: (a) As the
number of clients increases, prediction performance improves, indicating that more clients
enhance accuracy. (b) The training time per round remains consistent, ranging from 27
to 29 seconds, suggesting that increasing the number of clients does not significantly affect
the training overhead for individual clients. (c) The prediction time is notably short, which
meets the demands of real-time RUL prediction, allowing for quick and efficient forecasting.
(d) Communication time is minimal, with a slight increase as the number of clients grows,
from 0.0018 seconds to 0.0125 seconds.

Table 10: Prediction performance and time overhead of client 1 under different data scales.

Number of clients RMSE Score
Time (s)

Training Prediction Communication

1 20.68 145.26 29.38 0.1489 0.0018

2 19.10 123.88 27.17 0.1583 0.0027

3 17.46 101.81 27.76 0.1576 0.0086

4 17.65 93.49 27.56 0.1618 0.0113

5 16.67 82.38 27.64 0.1602 0.0125

4. Conclusion

This study introduces an AS-based ensemble FL method for RUL prediction, tackling
challenges like limited sample sizes and data privacy in modern industrial environments.
Compared to traditional FL approaches, the proposed method offers several advantages:
i) Ensemble learning aggregates predictions from multiple models, improving accuracy and
generalization. ii) The AS-based approach dynamically adjusts data collection strategies
based on client data quality. We apply the method to a turbofan engine dataset and compare
it with benchmark strategies. Key findings include: (a) The AS-EFL method significantly
outperforms independent client learning models and achieves accuracy close to state-of-the-
art centralized methods. (b) The ablation study shows that integrating individual modules
into FL improves predictive performance, with RMSE reducing by 12% and Score by 35%
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on average. (c) Sensitivity analysis confirms that the proposed model excels in prediction
performance and efficiency, even under conditions of data imbalance, missing data, and scale
variation.

These results highlight the effectiveness of the AS-EFL method. However, several areas
for future improvement are identified: (a) Although the model shows good prediction speed,
it is designed for batch processing and lacks real-time training or updates. Future work
will focus on online learning architectures to handle continuous data and adapt to changing
conditions. (b) Although validated on the C-MAPSS dataset and extended to realistic
scenarios such as missing data and client data imbalance, this single-source dataset may
not fully capture the complexity of real-world industrial settings. Future research will use
more dynamic datasets and varied industrial scenarios to test the model’s generalization. (c)
Traditional imputation methods may not effectively handle higher missing rates or complex
missing patterns. Future work will explore advanced techniques, such as using generative
adversarial networks to generate missing data or applying data augmentation strategies.
(d) Although we have conducted experiments on scale variation, the current scope remains
limited and has not yet exceeded expectations. Future efforts will focus on expanding
the scale by increasing the number of clients and incorporating larger datasets for a more
comprehensive evaluation.
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