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Abstract

In industry, many highly reliable products possess multiple performance characteristics
(PCs) and they typically degrade simultaneously. When such PCs are governed by a common
failure mechanism or influenced by a shared operating environmental condition, interdepen-
dence between these PCs arises. To model such dependence, this article proposes a novel
multivariate reparameterized inverse Gaussian (rIG) process model. It utilizes an additive
structure; that is, the degradation of each marginal PC is considered as the result of the sum
of two independent rIG processes with one capturing the shared common effects across all
PCs and the other describing the intrinsic randomness specific to that PC. The model has
some nice statistical properties, and the system lifetime distribution can be conveniently ap-
proximated. An expectation-maximization algorithm is proposed for estimating the model
parameters, and a parametric bootstrap method is designed to derive the confidence inter-
vals. Comprehensive numerical simulations are conducted to validate the performance of the
inference method. Two case studies are thoroughly investigated to demonstrate the appli-
cability of the proposed methodology. Supplementary materials for this article are available
online.
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1. Introduction

1.1. Motivation
In industry, life testing has long been a conventional method for predicting the re-

liability of various engineering products. However, with the expansion of highly reliable
products, this undertaking faces growing challenges, such as the scarcity of failure observa-
tions. An alternative strategy to overcome these challenges is to utilize degradation tests,
which continuously monitor performance characteristics (PCs) directly related to the qual-
ity of products (Hong et al., 2020; Hajiha et al., 2021). Compared with the traditional life
testing approach, leveraging the degradation data from these PCs proves to be an effec-
tive method for assessing system reliability in terms of improved accuracy and efficiency
(Ye et al., 2019; Chen and Ye, 2018). When such PCs are governed by a common failure
mechanism or influenced by a shared operating environmental condition, interdependence
between these PCs arises. Zhai and Ye (2023) provided an example of polymer coating
materials that undergo photooxidative degradation under ultraviolet radiation. Due to the
correlated effects of photooxidation and the influence of common environmental conditions,
the degradation behaviors of different chemical compositions within the material are interre-
lated. This interdependence leads to significant changes in the mechanical properties of the
coating materials, such as modulus and hardness. Correctly capturing the interdependence,
leading to the problem of multivariate degradation modeling, is crucial for an enhanced
prediction of system reliability. Another insightful example below motivates our study.

Permanent magnet brakes (PMBs) utilize the magnetic force generated by permanent
magnets to drive rotors and achieve braking by clamping a magnetic yoke. Renowned for
their compact size, robust interference resistance, and high torque, PMBs are widely used in
industrial production (Shin et al., 2013; Kou et al., 2021; Xu et al., 2024). To investigate the
system reliability of PMBs, a degradation experiment was conducted, involving a test of eight
samples in a typical high-temperature environment. In our experiment, these test units were
employed as braking servo motors in injection molding machines. The malfunction of PMBs
is the loss of magnetization, also known as demagnetization. This phenomenon is reflected
by two PCs: braking torque (denoted as PC1), and response time (denoted as PC2). The
degradation of these two PCs was measured in intervals of three days, and the experiment
spanned three months. Figure 1(a) depicts the degradation paths of the PCs and Table
1 displays the Pearson correlation coefficients between the PCs. The results indicate that
the sample correlations are all greater than 0.74, suggesting a strong interdependence. This
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dependency arises from the shared underlying failure mechanism of demagnetization, and it
can be referred to as a “common effect”. Furthermore, we fit the degradation increments of
each PC using inverse Gaussian (IG) distribution. Figure 1(b) presents the quantile-quantile
(Q–Q) plots with the p-values from the Kolmogorov-Smirnov (KS) test. Apparently, the IG
distribution provides a strong fit because most data points closely align along the theoretical
straight lines, and the p-values from the KS tests are consistently greater than the chosen
significance level (typically set as 0.05). Motivated by this example, we aim to establish a
multivariate IG process model incorporating common effects.

(a) Degradation paths (b) Q-Q plots using IG distribution

Figure 1: Summary of PMB data for two PCs: degradation paths and Q-Q Plots.

Table 1: Pearson correlation coefficients of two PCs across various units.

Unit 1 2 3 4 5 6 7 8

Correlation 0.819 0.749 0.806 0.840 0.779 0.749 0.765 0.800

1.2. Related literature
Over the past two decades, considerable research has been conducted on the problem of

multivariate degradation modeling, for which the key is to account for the interdependence
between multiple PCs (Hong et al., 2018; Kang et al., 2020). In the existing literature, three
primary approaches to modeling multivariate degradation are identified.

i) Copula-based method: built upon some stochastic processes for modeling marginals,
this method employs a designated copula function to capture the interdependence be-
tween PCs (Sun et al., 2021; Zhuang et al., 2021). For instance, Peng et al. (2016)
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recommended modeling the degradation of each PC using a Wiener process or an IG
process. They further advocated the incorporation of a multivariate copula function
to represent the interdependence between different PCs. The effectiveness of this
approach was substantiated through a comprehensive degradation analysis of heavy
machine tools. Fang and Pan (2021) utilized three types of copula functions, namely
elliptical copulas, exchangeable Archimedean copulas, and vine copulas, to character-
ize intricate dependence structures in correlated degradation processes. Jiang et al.
(2023) performed a reliability analysis on a mechanical system involving two PCs. The
model employed four copula functions to capture the dependencies between the PCs
and constructed a predictive model for remaining useful life (RUL).

ii) Multivariate distribution-based method: this approach involves modeling the
multi-dimensional degradation data using well-behaved multivariate stochastic pro-
cesses or independent stochastic processes with multivariate random effects (Fang and
Pan, 2023; Pan and Balakrishnan, 2011). For instance, Dong et al. (2020) proposed a
correlated Wiener process to model a bivariate degradation process. They applied the
proposed model to rail track geometry degradation data and conducted a reliability
analysis. Yan et al. (2023) modeled the degradation processes of multiple PCs by
using multivariate Wiener processes, considering the correlation between the degra-
dation rate and volatility. Fang et al. (2022) utilized independent IG processes with
correlated random effects to describe the degradation process of multiple dependent
PCs. They further applied this model to both coating data and fatigue crack-size data.

iii) Common-effect-based method: this approach suggests that the subsystems within
certain complex systems, operating in the same environment, are influenced by a com-
mon unobservable latent factor in their degradation paths. There are primarily two
modeling approaches: a) Frailty model-based method: this approach incorporates
frailty factors to account for unmeasured common influences and subsystem hetero-
geneity. Xu et al. (2018) first implemented this method in a two-dimensional degrada-
tion model, using a Wiener process and assuming a normally distributed frailty factor.
Subsequently, this framework was further developed by Song and Cui (2022) and Barui
et al. (2024). b) Stochastic process summation method: this method employs a specific
stochastic process to depict the common environmental influences. By integrating the
common process into the independent degradation process of each PC, a multi-PCs de-
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pendent degradation model can be developed (Mercier and Pham, 2012; Huynh et al.,
2022). Based on this method, Liu et al. (2021) proposed a bivariate gamma process
for maintenance strategies, and Zhai and Ye (2023) introduced a multivariate Wiener
process for reliability analysis.

Among the three mentioned methods, the copula-based approach encounters significant
challenges in selecting an appropriate copula function or providing clear physical interpre-
tations (Xu et al., 2018). The majority of methods based on multivariate random effects
are confined to bivariate cases, and extending these models to encompass multivariate dis-
tributions remains a formidable challenge (Yan et al., 2023). The common-effect-based
method is a prevalent technique in multivariate degradation modeling due to its degrada-
tion mechanism-driven and parsimonious nature. However, the frailty model-based method,
which employs a single frailty factor in the multidimensional degradation model, restricts
the model’s universality. In contrast, the key advantage of the stochastic process summation
method is that the number of model parameters increases only linearly with the variable
dimension. This linear parameterization significantly simplifies the complexity of modeling
high-dimensional performance degradation (Zhai and Ye, 2023). Nevertheless, existing work
in multivariate degradation modeling primarily concentrates on Wiener processes due to
their ideal physical interpretability and excellent mathematical properties for characterizing
nonmonotonic degradation processes. A notable gap exists in the availability of a multi-
variate degradation modeling framework based on monotonic degradation processes, such as
gamma or IG processes.

1.3. Contributions and key insights

For the multivariate gamma process, Huynh et al. (2022) proposed a common-effect-
based multivariate degradation model, while their work only focused on maintenance assum-
ing that the model parameters were known. To the best of our knowledge, there is scarce
literature providing statistical inference and reliability analysis for monotonically dependent
multivariate degradation processes subject to common environmental influences. To bridge
this gap, we aim to propose a multivariate degradation model for IG processes based on the
common-effect method, designed to model the monotonic degradation of multiple dependent
PCs. Following the approach by Mercier and Pham (2012), we may use two IG processes to
jointly characterize the degradation path of the k-th PC, i.e., Yk(t) = Xk(t) + Z(t), where
Xk(t) follows classical IG process IG(ϑkt, ηt

2) to describe the PC-specific degradation, and
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Z(t) follows classical IG process IG(ϑ0t, ηt
2) to capture the influence of the common en-

vironment on the PC. The classical IG process, defined by Ye and Chen (2014), is widely
employed in modeling degradation data. Despite the prevalent use of the classical IG process,
the summation of two independent classical IG processes does not yield an IG process. Con-
sequently, deriving the stochastic properties of Yk(t) poses a significant challenge, making it
difficult to obtain the lifetime distribution of the system. To address challenges associated
with the traditional IG process, we propose a novel reparameterized IG (rIG) degradation
model characterized by its inherent additivity. The main contributions and innovations of
this paper are as follows:

• We construct a multivariate rIG process using the common-effect method and conduct
analyses of its properties and the system’s lifetime distribution.

• We utilize the Gauss-Legendre (GL) quadrature method for approximation due to the
complexity of directly computing the integral in the lifetime distribution.

• The expectation-maximization (EM) algorithm is employed to estimate model pa-
rameters, supplemented by a parametric bootstrap approach to construct confidence
intervals (CIs).

• Comprehensive numerical simulations and two case studies are conducted to demon-
strate the practical applicability of the proposed approach.

1.4. Overview

The structure of the remainder of this paper is as follows. Section 2 introduces the
multivariate modeling framework based on the rIG process and thoroughly examines the
properties of the proposed model. Following that, Section 3 delves into the reliability anal-
ysis, while Section 4 develops an EM algorithm for acquiring maximum likelihood (ML)
estimates. In this section, CIs for model parameters are established using parametric boot-
strap. To validate the performance of the proposed model, Section 5 conducts simulation
studies. In Section 6, the proposed model is applied to two datasets. Finally, the conclusion
is presented in Section 7.

2. Model formulation
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2.1. The rIG degradation model

A stochastic process {Z(t), t ≥ 0} is termed an rIG process, denoted as rIG (Λ(t), γ),
if it satisfies the following properties. (i) Z(0) = 0 with probability one; (ii) The increments
of Z(t) are independent. Specifically, for all t2 > t1 ≥ s2 > s1 ≥ 0, the increments
Z(t2) − Z(t1) and Z(s2) − Z(s1) are mutually independent; (iii) For all t > s ≥ 0, the
increment Z(t) − Z(s) follows the rIG distribution denoted as rIG (Λ(t)− Λ(s), γ). Here,
Λ(t) is a monotone increasing function with the initial condition Λ(0) = 0, δ represents
the drift parameter and γ denotes the dispersion parameter. The cumulative distribution
function (CDF) and probability density function (PDF) of rIG(δ, γ) are defined as

FrIG(y; δ, γ) = Φ

[
√
yγ − δ

√
y

]
+ e2δγΦ

[
−√

yγ − δ
√
y

]
, (1)

and
frIG(y; δ, γ) =

δ√
2π

eδγy−3/2e−(δ
2y−1+γ2y)/2, y > 0, δ > 0, γ > 0, (2)

respectively, where Φ(·) is the CDF of standard normal distribution. The parameter relation-
ship between the rIG distribution rIG(δ, γ) and the traditional IG distribution IG(a, b) is
a = δ/γ and b = δ2. The motivation for the reparameterization approach lies in the specific
additive property of the rIG distribution. Specifically, if a random variable Y ∼ rIG(δ, γ),
then its moment generating function is given by

MY (t) = E(ety) = e
δγ

(
1−

√
1− 2t

γ2

)
. (3)

Based on (3), it can be found that if Y1 ∼ rIG (δ1, γ) and Y2 ∼ rIG (δ2, γ), then Y =

Y1 + Y2 ∼ rIG (δ1 + δ2, γ) . Utilizing (3), we can obtain that the mean and variance of
{Y (t), t ≥ 0} are (δ1 + δ2)/γ and (δ1 + δ2)/γ

3, respectively.

2.2. Multivariate rIG process with common effects

We consider a system with K PCs. By convention, we posit that the initial degradation
of each PC is zero at time t = 0, and the degradation process of the k-th PC can be
formulated as

Yk(t) = Xk(t) + Z(t), k = 1, . . . , K (4)

with
Z(t) ∼ rIG (Λ0(t), γ) and Xk(t) ∼ rIG (Λk(t), γ) , k = 1, . . . , K, (5)
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where Z(t) and Xk(t), k = 1, . . . , K are independent of each other, Λk(t) and Λ0(t) represent
monotonically increasing functions of t. In practical applications, the specific functional
form of Λk(t) can be determined through engineering expertise or empirical investigation.
Model (4) is inspired by the observed degradation mechanism in physical systems (e.g.,
PMBs, heavy machine tools). We formulate the degradation for each PC as the sum of
two independent rIG processes. One rIG process represents the common effects affecting
all PCs, reflecting the overall health status of the system that impacts each PC uniformly.
The other rIG process describes degradation arising from distinctive randomness specific to
each PC, capturing the accumulation of damage that is independent of the systemic effect.
By combining the internal degradation effects and the overall functional dependence, model
(4) offers a comprehensive framework that allows for a more holistic consideration of the
degradation and dependence among various PCs within the system. This approach brings
the model closer to real-world scenarios and facilitates a more accurate understanding of the
system’s operational and maintenance requirements.

Based on the additive property of the rIG distribution induced by (3), Yk(t) is also a
rIG process satisfying

Yk(t) ∼ rIG (Λk(t) + Λ0(t), γ) , k = 1, . . . , K. (6)

For the proposed model, the following two propositions are established.

Proposition 1. The mean and variance of the degradation process Yk(t) are

E [Yk(t)] =
Λ0(t) + Λk(t)

γ
, and Var [Yk(t)] =

Λ0(t) + Λk(t)

γ3
, (7)

respectively. Meanwhile, the common effect Z(t) introduces dependence among the multiple
degradation processes

Cov [Yk1 (t1) , Yk2 (t2)] =
min (Λ0 (t1) ,Λ0 (t2))

γ3
, k1 ̸= k2. (8)

Consequently, at any given time t, the Pearson correlation coefficient between Yk1(t) and
Yk2(t) is

ρ [Yk1(t), Yk2(t)] =
Λ0(t)√

(Λ0(t) + Λk1(t)) (Λ0(t) + Λk2(t))
, k1 ̸= k2. (9)

The proof is provided in Supplementary Section S1.1. Proposition 1 reveals that the
correlation between any two PCs primarily arises from the common effect Z(t). When
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Λ0(t) significantly surpasses Λk(t), the Pearson correlation coefficient (9) tends towards 1.
Conversely, if the common effect Z(t) vanishes (i.e., Λ0(t) = 0), the Pearson correlation
coefficient will be 0.

Proposition 2. The joint PDF of Y1(t), . . . , YK(t) can be obtained as

fY (t) (y1, . . . , yK) =

∫ ỹ

0

frIG (z; Λ0(t), γ)
K∏
k=1

frIG (yk − z; Λk(t), γ) dz, (10)

where ỹ = min{y1, . . . , yK}, where y1, . . . , yK are the observed dagradation values. And
frIG(·) is given by (2). The corresponding CDF is expressed as

FY (t) (y1, . . . , yK) =

∫ ỹ

0

frIG (z; Λ0(t), γ)
K∏
k=1

FrIG (yk − z; Λk(t), γ) dz, (11)

where FrIG(·) is given by (1).

Proposition 2 gives the joint PDF and CDF of Y1(t), . . . , YK(t), which can be used for
deriving the ML estimates of the model parameters.

3. Reliability analysis

According to engineering practice, the failure time of the system is of critical concern
for engineers. A common method of failure definition for the k-th PC is associated with
a failure threshold Dk. That is, if any of the K PCs exceeds its respective threshold, the
system is considered to have failed (Lu et al., 2021; Zhuang et al., 2024). Following this
concept, we derive the system failure time for the proposed model. Firstly, let the failure
time of the k-th PC be represented as follows

TDk
= inf {t : Yk(t) ≥ Dk} .

As a rIG process has monotone degradation paths, the distribution of the failure time can
be expressed as P (TDk

< t) = P (Yk(t) ≥ Dk). Then, the CDF of the failure time for an
individual degradation process can be derived as follows

FTDk
(t | Λ0(t),Λk(t), γ,Dk)

= 1−
{
Φ

[√
Dkγ − Λ0(t) + Λk(t)√

Dk

]
+ e2[Λ0(t)+Λk(t)]γΦ

[
−
√

Dkγ − Λ0(t) + Λk(t)√
Dk

]}
,

≜ 1− FrIG(Dk; Λ0(t) + Λk(t), γ).

(12)
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Then, the system failure time can be defined by

TD = inf {t : Y1(t) ≥ D1 or · · · or YK(t) ≥ DK} ,

where D = (D1,D2, . . . ,DK)
′ is a vector storing all PC failure thresholds. We have the

following result for the CDF of system failure time.

Proposition 3. The CDF of system failure time TD is

FTD(t | Λ(t), γ,D) =

∫ ỹ

0

[
1−

K∏
k=1

(FrIG(Dk − z; Λk(t), γ))

]
frIG (z; Λ0(t), γ) dz, (13)

where Λ(t) = (Λ0(t), . . . ,ΛK(t))
′, and ỹ = min{y1, . . . , yK}.

The proof is provided in Supplementary Section S1.2. Due to the complexity of directly
computing the integral in (13), we employ the GL quadrature method to approximate this
integral. GL quadrature is a specific form of Gaussian quadrature designed for the accurate
approximation of challenging integrals (Swarztrauber, 2003). In comparison to Monte Carlo
(MC) integration, GL quadrature provides precise estimates of the integral while requiring
a significantly reduced computational budget (Babolian et al., 2005). After applying the GL
integral approximation, (13) can be approximated as

FTD(t | Λ(t), γ,D)

≈ ỹ

2

l∑
q=1

wq

[
1−

K∏
k=1

(
FrIG(Dk −

ỹ(uq + 1)

2
; Λk(t), γ)

)]
frIG

(
ỹ(uq + 1)

2
; Λ0(t), γ

)
.

(14)
where l is a given order, uq is the root of the Legendre polynomial and wq is the corresponding
weight. More details on integration approximation can be found in Supplementary Section
S2. To validate the accuracy of the GL approximation, we plot the CDF of system failure
time for four scenarios from Table 2 using the GL formula in (14), alongside empirical CDFs
and MC-based approximation method with 1000 samples for comparison (see Figure 2). The
results demonstrate that the GL-based approximation outperforms the MC-based method
in all scenarios with l = 10 and l = 15. In terms of computational efficiency, the MC
method averages 1.837 seconds per execution, while the GL method only takes about 0.020
and 0.029 seconds for l = 10 and l = 15, respectively. Consequently, to balance accuracy
and efficiency, this study opts for the GL method with l = 10 to approximate the complex
integral.
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Figure 2: CDF of system failure time across four scenarios.

4. Parameter estimation

This section focuses on the parametric multivariate rIG model when Λk(t) has a specific
function form with unknown parameters. We assume that Λk(t) = Λk(t;αk, βk) involves
unknown parameters αk and βk, where k = 0, . . . , K. Commonly used functions include
power-law form Λk(t;αk, βk) = βkt

αk and log-linear form Λk(t;αk, βk) = βk [exp(αkt)− 1].
However, randomly choosing function forms may cause the issue of parameter noniden-
tifiability. For instance, when Λk(t) = βkt

α and Λ0(t) = β0t
α, we derive that Yk(t) ∼

rIG ((β0 + βk)t
α, γ). In such a case, β0 and βk can not be identified, and we can only esti-

mate β0 + βk from the observed data. To avoid this issue, we assume Λ0(t) = Λk(t;α0). Let
Λ(t) = (Λ0(t), . . . ,ΛK(t))

′. The model parameters are represented as θ = {β,α, γ}, with
β = (β1, . . . , βK)

′ and α = (α0, . . . , αK)
′.

Assume that there are n systems tested in an experiment. The degradation of the K

PCs in the i-th system are measured at mi time points, denoted as Ti = (ti,1, . . . , ti,mi
)′, and

the degradation values are Yi,k = (Yi,k,1, . . . , Yi,k,mi
)′ for k = 1, . . . , K, i = 1, . . . , n. Define

the degradation increments of the k-th PC between (ti,j−1, ti,j] as ∆Yi,k,j ≜ Yi,k,j − Yi,k,j−1

for j = 1, . . . ,mi, where we set ti,0 = 0 and Yi,k,0 = 0. Let ∆Yi,:,j = (∆Yi,1,j, . . . ,∆Yi,K,j)
′.
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Based on (10), we have

p (∆Yi,:,j | θ) =
∫ ∆ỹi,j

0

frIG (∆zi,j; ∆Λ0(ti,j), γ)

×
K∏
k=1

frIG (∆yi,k,j −∆zi,j; ∆Λk(ti,j), γ) d∆zi,j, (15)

where ∆ỹi,j = min{∆Yi,1,j, . . . ,∆Yi,K,j}. The log-likelihood function can be easily derived
(Shao and Wang, 2023), and the model parameters can be estimated by maximizing the
given log-likelihood function

θ̂ = arg max
θ

n∑
i=1

mi∑
j=1

ln p (∆Yi,:,j | θ) .

However, since p(∆Yi,:,j|θ) is a complex function of θ, obtaining the analytical form of θ̂ is
challenging. Instead, we develop an EM algorithm to derive the ML estimates.

4.1. EM algorithm for point estimation

We consider the unobserved common effect Zi,j = Zi (ti,j) for i = 1, . . . , n, j = 1, . . . ,mi

as the missing data, and define Zi = (Zi,1, . . . , Zi,mi
)′, ∆Λi,k,j = ∆Λk(ti,j), k = 1, . . . , K.

Given Zi, we have that

∆Yi,k,j −∆Zi,j | Zi ∼ rIG (∆Λi,k,j , γ) , (16)

with 0 ≤ ∆Zi,j ≤ ∆ỹi,j. Denote Y = {∆Yi,:,j, i = 1, . . . , n, j = 1, . . . ,mi}, and Z =

{Z1, . . . ,Zn}. The log-likelihood with the complete data is

ℓ(θ | Y,Z) =
n∑

i=1

mi∑
j=1

{
K∑
k=1

ln p (∆Yi,k,j −∆Zi,j | ∆Zi,j) + ln p (∆Zi,j)

}
, (17)

where

ln p (∆Yi,k,j −∆Zi,j | ∆Zi,j) =− 1

2
ln(2π) + ln∆Λi,k,j −

3

2
ln (∆Yi,k,j −∆Zi,j)

+ γ∆Λi,k,j −
∆Λ2

i,k,j

2 (∆Yi,k,j −∆Zi,j)
− γ2 (∆Yi,k,j −∆Zi,j)

2
,

and

ln p (∆Zi,j) =− 1

2
ln(2π) + ln∆Λi,0,j + γ∆Λi,0,j −

3

2
ln∆Zi,j −

∆Λ2
i,0,j

2∆Zi,j

− γ2∆Zi,j

2
.
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Here, ∆Λi,0,j = ∆Λ0(ti,j), ∆Λi,0,j = Λi,0,j − Λi,0,j−1. The main idea of the EM algorithm is
to obtain an estimate of θ by iteratively executing E-steps and M-steps until convergence
is achieved. We assume that θ(s) is the optimal solution in the M-step during the s-th
iteration. At the (s+ 1)-th iteration, we need to calculate the following Q-function

Q
(
θ | θ(s)

)
= E

[
ℓ(θ | Y,Z) | Y,θ(s)

]
, (18)

which is the expectation of the complete log-likelihood with respect to p
(
Z | Y,θ(s)

)
. The

detailed derivation of the conditional distribution p
(
Z | Y,θ(s)

)
, and the conditional expec-

tations involved, E
[
(∆Yi,k,j −∆Zi,j)

−1 | ∆Yi,:,j

]
, E [∆Zi,j | ∆Yi,:,j] , and E

[
∆Z−1

i,j | ∆Yi,:,j

]
,

can be found in Supplementary Section 3.1. When we obtain the Q-function in (18), the
update of the optimal solution in the M-step is carried out as follows

θ(s+1) = arg max
θ

Q
(
θ | θ(s)

)
. (19)

This can be accomplished by computing the partial derivatives of the Q-function with re-
spect to θ and setting these derivatives equal to zero (refer to Supplementary Section 3.2
for detailed explanations). Finally, the ML estimation for θ is obtained until convergence
according to a specified criterion. The proposed EM algorithm can be implemented with
the following key steps.

• Initialization: Start with initial values θ(0) for the parameters θ (see Section 4.2),
and set the tolerance error ω.

• E-step: Calculate Q
(
θ | θ(s)

)
by (18), based on the s-th iteration of parameters

estimation θ(s).

• M-step: Compute the (s+ 1)-th parameter estimation θ(s+1) using (19).

• Iteration: Iterate through the E-step and M-step until
∥∥θ(s+1) − θ(s)

∥∥ < ω, where
∥ · ∥ denotes the Euclidean distance.

• Output: Obtain the ML estimates of θ.

4.2. Determine initial parameter estimation values

In the execution of the EM algorithm, the choice of initial parameter values is pivotal,
as it substantially impacts both the convergence time and the algorithm’s effectiveness in
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discovering globally optimal solutions. To determine the initial values of θ, a two-step
method is proposed. Initially, we calculate the sample mean and variance of the degradation
paths for k-th PC at time j as follows

∆Ȳ:,k,j =
1

n

n∑
i=1

∆Yi,k,j , and ∆s2:,k,j =

∑n
i=1

(
∆Yi,k,j −∆Ȳ:,k,j

)2
n− 1

.

According to (7) and the principles of moment estimation, we calculate the estimate for γ,

γ̂ =

√√√√∑K
k=1

∑mi

j=1 ∆Ȳ:,k,j∑K
k=1

∑mi

j=1 ∆s2:,k,j
.

As E [∆Yi,k,j ] represents the average degradation increment of the k-th PC of unit i at time j,
a preliminary estimate of β and α can be derived by minimizing the weighted mean square
error between E [∆Yi,k,j ] and ∆Yi,k,j . Assuming the estimate of γ is known, we optimize the
following formula to calculate the estimated values of β and α.

Ψ = arg min
β,α

n∑
i=1

mi∑
j=1

K∑
k=1

(E [∆Yi,k,j ]−∆Yi,k,j)
2

var [∆Yi,k,j ]

= arg min
β,α

γ̂
n∑

i=1

mi∑
j=1

K∑
k=1

[
γ̂2∆Y 2

i,k,j

∆Λi,0,j +∆Λi,k,j

+∆Λi,0,j +∆Λi,k,j

]
.

(20)

4.3. Bootstrap for interval estimation
Our current emphasis lies in establishing interval estimates for θ through the utilization

of the parametric bootstrap method (Zhai and Ye, 2023; Lamu and Yan, 2024). The detailed
bootstrap procedure is delineated in Algorithm 1. To derive an approximate 100(1 − ς)%
bootstrap CIs for a function of the parameters, denoted as X (θ), we follow two steps as
follows.

• Bootstrap sampling: implement Algorithm 1 to generate B bootstrap estimates{
θ̂∗
1, . . . , θ̂

∗
B

}
.

• Interval construction: utilize the obtained bootstrap estimates to construct the
bootstrap CIs. Specifically, for a given significance level ς, the interval is computed as
follows [

X
(
θ̂∗
)
(ςB/2)

,X
(
θ̂∗
)
((1−ς/2)B)

]
,

where X
(
θ̂∗
)
(p)

denotes the p-th empirical quantile of the bootstrap estimates.
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Algorithm 1: Bootstrap algorithm procedure.
Input: Point estimate θ̂.
Output: B replicates of estimates,

{
θ̂∗
1, . . . , θ̂

∗
B

}
.

1 for b = 1 to B do
2 for i = 1 to n do
3 for j = 1 to mi do
4 Generate samples ∆Z̃i,j from rIG

(
∆Λ̂i,0,j, γ̂

)
;

5 for k = 1 to K do
6 Generate samples ∆X̃i,k,j from rIG

(
∆Λ̂i,k,j , γ̂

)
;

7 Obtain samples ∆Ỹi,k,j = ∆X̃i,k,j +∆Z̃i,j.
8 end
9 end

10 end
11 Obtain pseudo degradation increment data ∆Ỹ .
12 Obtain θ̂∗

b based on ∆Ỹ using the proposed EM algorithm.
13 end

This approach furnishes an effective means of approximating the interval within which
the function X (θ) is expected to lie with confidence level 100(1− ς)%.

4.4. Model validation

In this section, we concentrate on verifying the goodness of fit (GOF) of the proposed
model. Following the approach described in Fang et al. (2022), we adapt model validation
techniques from univariate IG processes to the multivariate case. Based on the properties of
the IG distribution as detailed in Wang and Xu (2010), we extend these properties to the rIG
distribution. Specifically, for a random variable Y ∼ rIG(δ, γ), the transformation (γY −
δ)2/Y follows a χ2 distribution with one degree of freedom. Hence, for the k-th PC, where
∆Yi,j,k ∼ rIG (∆Λk(ti,j) + ∆Λ0(ti,j), γ), the statistic [γ̂∆Yi,j,k−∆Λ̂k(ti,j)−∆Λ̂0(ti,j)]

2/∆Yi,j,k

approximates an i.i.d. χ2
1 distribution. The χ2

1 Q-Q plots serve to evaluate the GOF for each
PC’s rIG process model, supplemented by the KS test for statistical GOF assessment. If the
p-value is greater than the significance level, we cannot reject the null hypothesis that the
data follows χ2

1 distribution. To investigate whether different PCs share a common dispersion
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parameter γ, a likelihood ratio test is implemented. Under the assumption of independence
among PCs, two models are examined: i) a unified model where all PCs share a common
γ, and ii) a heterogeneous model where each PC is characterized by a distinct dispersion
parameter γi, i = 1, . . . , K. The parameters of these models are estimated using the MLE
method, with their log-likelihoods denoted as ℓ1 and ℓ2 respectively. The test statistic
τ = −2(ℓ1 − ℓ2) follows a chi-square distribution with K − 1 degrees of freedom under the
null hypothesis that asserts a uniform γ across all PCs. A p-value below the significance level
leads to the rejection of this hypothesis, thereby suggesting significant variations in γ among
the PCs. Finally, we employ the Akaike information criterion (AIC) to select the optimal
model, calculated as AIC = 2κ−2ℓ, where ℓ represents the corresponding log-likelihood and
κ represents the total number of model parameters.

5. Simulation study

In this section, we evaluate the performance of the proposed inference method through
an MC simulation study. Specifically, we consider a multivariate rIG process with common
effects with three PCs, i.e., K = 3. Four combinations of Λk(t) and Λ0(t) are examined,
as detailed in Table 2, along with their corresponding parameter values. Assuming the
degradation of the n units is measured at the same time intervals, and all mi are equal, i.e.,
m1 = · · · = mn ≡ m = 10. To assess the influence of the sample size on inference, we consider
three unit sizes n: 5, 8, and 10. For each configuration, we perform 500 MC replications of
data generated from the simulated model and fit them using the EM algorithm, on a laptop
with an Apple M2 Pro CPU. Simulated degradation paths for three PCs are presented in
Figure S1 of Supplementary Section S4, with additional results for higher dimensions also
available in the same section.

Table 2: Four combinations of Λk(t) and Λ0(t) with corresponding parameters.

Scen. Λk(t) Λ0(t) α′ β′ γ D

I βkt
αk tα0 (1, 0.8, 1, 1.2) (0.8, 1, 1.2) 4 (3.6, 4.8, 7.2)

II βkt
αk exp(α0t)− 1 (1, 0.25, 0.33, 0.37) (0.8, 1, 1.2) 4 (4, 8, 13)

III βk [exp(αkt)− 1] tα0 (0.05, 0.3, 0.4, 0.4) (0.8, 1, 1.2) 4 (0.44, 0.66, 0.88)

IV βk [exp(αkt)− 1] exp(α0t)− 1 (0.1, 0.1, 0.1, 0.1) (0.8, 1, 1.2) 4 (0.42, 0.56, 0.42)
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5.1. Validation of model parameter estimators

The proposed EM algorithm is employed for point estimation on each synthetic dataset.
It’s noteworthy that the proposed EM algorithm typically converges in approximately 200
iterations (with

∥∥θ(s+1) − θ(s)
∥∥ < 10−4). The interval estimates are constructed based on

200 bootstrap samples for the EM algorithm. To assess the overall quality of the parameter
estimation method, we compute the relative root mean square error (RRMSE), and the
coverage probability (CP) of the 95% CIs for the three different n across the 100 replications.
RRMSE for the parameter v based on 100 repetitions is defined as follows:

RRMSE(v̂) =
[

1

100

100∑
i=1

(
v̂i − v

v

)2
]1/2

.

Figures 3 and 4 show the RRMSE and CP of estimators based on the proposed parameter
estimation method. These results reveal that for each estimator, the RRMSE decreases as n
increases. Conversely, the CP tends towards 95% with increasing n. While the performance
of parameter estimation differs across scenarios, the overall effectiveness is satisfactory, par-
ticularly with moderately sized n.

Figure 3: RRMSE (×10−2) of estimators across different unit sizes and scenarios.
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Figure 4: CP (×100%) of estimators across different unit sizes and scenarios.

5.2. Estimates of correlation coefficients between PCs
We calculate correlation coefficients for three pairs of PCs: ρ(Y1(t), Y2(t)), ρ(Y1(t), Y3(t)),

and ρ(Y2(t), Y3(t)) based on (9). Due to space limitations, we place the RRMSE (×10−2)
of the correlation estimates for various unit sizes and scenarios over time in Figure S2 with
Supplementary Section S4.1. Similar to the parameter estimation results, the RRMSE of
the correlation estimates is relatively small and decreases as the sample size increases. Ad-
ditionally, RRMSE exhibits different trends across scenarios. Scenario II shows an initial
increase followed by a decrease, particularly in ρ(Y2(t), Y3(t)). In other scenarios, RRMSE
gradually increases over time. This phenomenon can be attributed to the nonlinearity of
the correlations over time.

5.3. Performance of reliability estimation
Given the parameter estimations under and failure thresholds, the mean time to failure

(MTTF) of the system,

MTTF = E(T ) =

∫ ∞

0

1− FTD(t | β,α, γ,D)dt,

is computed to evaluate the performance of reliability estimation. Based on the results
from previous parameter estimations, we calculate the MTTF for each simulated sample
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and compare these calculations with the actual MTTF values. The boxplots of RRMSE
of MTTF under different scenarios and unit sizes are presented in Figure 5. Consistent
with previous results, our estimates exhibit relatively small RRMSE values, which gradually
decreased with increasing sample sizes, and the occurrence of outliers also decreased. In
addition, we compare the reliability of the proposed model with another model to assess
the effect of model mis-specification. A benchmark model is considered, which assumes that
PCs are independent of each other, i.e., Yk(t) ∼ rIG (Λk(t;αk, βk), γ) , k = 1, . . . , K. We
utilize ML method to infer parameter estimates. After repeating the simulation 100 times
for each scenario, the average RRMSE (×10−2) of MTTF under the four scenarios based
on the PC independence model is 4.629, compared with 2.215 for the proposed model. It
can be seen that for simulation data with inter-PC dependencies, if we use the PC inde-
pendence model for analysis, the reliability estimate obtained has a large deviation. Such
inaccurate reliability estimates may cause unnecessary maintenance costs and increase the
risk of production interruption.

Figure 5: RRMSE (×10−2) of MTTF estimators across different unit sizes and scenarios.

6. Case studies

This section demonstrates the application of the proposed methodology through analy-
sis of the PMB degradation data that motivated this study (see Section 6.1), and the fatigue
crack-size data (see Section 6.2).
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6.1. PMB degradation data

We apply the proposed model for data fitting and consider four different scenarios.
Model parameters are estimated using the EM algorithm, and the convergence of model
inference is assessed through trace plots of parameter estimation, as presented in Figure
S4 within Supplementary Section S5. We employ the bootstrap approach with B = 500

replicates to obtain interval estimation. To compare the superiority of the proposed models,
we introduce a model assuming independence between all PCs, i.e., Λ0(t) = 0. The model
parameters are estimated using ML methods. Table 3 presents the parameter estimation
results for different models. Additionally, the AIC values for each model are provided. It
is evident from these results that the AIC values for the proposed models are consistently
lower than those of the independent model. Among the four scenarios, Scenario III exhibits
the lowest AIC, which we regard as the optimal model for PMB data. The estimated results
of α from the table indicate that the degradation of PC2 is faster than that of PC1. This is
consistent with what we observe in the degradation paths in Figure 1.

Table 3: Parameter point estimates regarding the PMB data.

Model Scen. α0 α1 α2 β1 β2 γ AIC

Proposed

I 0.866 1.296 1.463 0.028 0.124 3.030 -2219.427

II 0.724 0.104 0.068 0.942 6.182 4.375 -2494.123

III 0.100 0.994 1.205 0.395 0.531 4.263 -2603.588

IV 0.098 0.009 0.025 42.099 30.476 4.299 -2594.714

Independent
Power - 1.518 1.456 0.151 0.317 3.703 -637.266

Log-linear - 0.056 0.054 6.830 11.944 4.079 -744.887

To validate the fitted model, we utilize the χ2
1 Q-Q plot and conduct tests to determine

whether different PCs share the same dispersion parameter γ, as outlined in Section 4.4.
The Q-Q plot presented in Figure 6(a) illustrates that most data points closely align with
the theoretical straight line. Furthermore, the KS test yields p-values greater than 0.05 for
both PCs, supporting the adequacy of the model fit to the dataset. Additionally, based on
the optimal model for PMB data (Scenario III where Λk(t) = βk[exp(αkt)− 1]), we conduct
a likelihood ratio test. The p-value is 0.233, which exceeds 0.05, indicating no significant
differences in the γ values across the PCs, thereby affirming their homogeneity. In Figure
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6(b), the estimated mean degradation path (purple line) and 90% confidence band (green
dashed line) for two PC degradation paths (gray line) for PMB data are presented. The figure
illustrates that the 90% confidence bands adequately encompass the actual degradation paths
for both PCs. This observation substantiates the validity of the proposed model. Figure 7(a)
shows the correlation coefficient estimation results between the two PC degradation paths.
It can be seen from the figure that ρ [Y1(t), Y2(t)] is minimized when the initial value is
0.172. As time increases, the correlation between the two PCs gradually increases, reaching
0.484 at t = 30. This implies that over time, the impact of magnetic degradation and
common environmental effects on both PCs (braking torque and armature response time) is
increasing relative to their individual degradation effects.

(a) Q-Q plots under scenario III model (b) Estimated mean degradation path

Figure 6: Summary of PMB data analysis results: Q-Q plots under scenario III model and the estimated
mean degradation path.

Based on the degradation path fitting results, we conduct a thorough analysis of the
system’s reliability by applying (13) over a specified period. To demonstrate the predictive
performance of the proposed model for failure times, we set low failure thresholds for two
PCs: 3.087 and 5.733, ensuring that system failures occurred before the final observation
period. Figure 7(b) illustrates the reliability curves of the system’s failure time. Addition-
ally, the pointwise 90% confidence band for the system reliability, determined through the
parametric bootstrap method, is also depicted. Given the parameter estimations and failure
thresholds, we compute the system’s MTTF. The actual average failure time is determined
to be 19, while the predicted average MTTF value is 19.647. The average RRMSE between
the actual and predicted values is 0.034. This comprehensive evaluation suggests that our
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(a) Correlation coefficients (b) Reliability curves

Figure 7: Correlation coefficients and reliability curves for PMB data.

prediction performance is relatively accurate. The close alignment between predicted and
actual results provides a solid foundation for future reliability maintenance strategies.

6.2. Fatigue crack-size data

For broader applications, we utilize a subset of fatigue crack size data that describes
the progression of cracks in an alloy over time. Similar to the approach by Wang et al.
(2014) and Fang et al. (2022), the dataset is partitioned into three segments, forming a 3-
dimensional degradation process with a sample size of six test units (i.e., K = 3, and n = 6).
The initial crack size is 0.9; for convenience, we subtract 0.9 from all data and perform a
scale transformation by multiplying by 10. The degradation paths are illustrated in Figure 8,
with nine observations conducted on each PC (i.e., m = 9). The original dataset is initially
presented in Meeker et al. (2022), and the processed data can be found in Appendix H of
Fang et al. (2022).

We apply the proposed model to this dataset. Convergence of the EM algorithm is
monitored using trace plots of parameter estimates across iterations, as depicted in Figure
S5 within Supplementary Section S5. The parameter estimation results for four scenarios
are summarized in Table 4. It can be observed that Scenario IV has the lowest AIC, leading
us to select it as the optimal model for further analysis. Next, we conduct a GOF assessment
for the model. Examination of the Q-Q plots in Figure 9(a) reveals that the majority of data
points align closely with the theoretical straight line, although a few are notably distant.
These outliers may be attributed to uncertainties in the mean estimator (Fang et al., 2022).
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Figure 8: Degradation paths for fatigue crack-size growth data.

Furthermore, the KS test yields p-values greater than 0.05 for all three PCs, indicating
that the proposed model achieved a reasonable fit to the dataset. The likelihood ratio
test is performed based on the optimal model. The p-value is 0.385, which exceeds 0.05,
indicating no significant differences in the γ values across the PCs. This suggests that our
model is suitable for this dataset. Figure 9(b) presents the average path fitting based on
the optimal model and the corresponding CIs for the degradation paths of the three PCs.
From the figure, it is evident that the 90% confidence bands appropriately cover the actual
degradation paths for all three PCs, demonstrating the correctness of the proposed model.

Table 4: Parameter point estimates regarding the fatigue crack-size data.

Model Scen. α0 α1 α2 α3 β1 β2 β3 γ AIC

Dependent

I 1.178 1.327 1.332 0.736 0.796 0.415 0.249 4.836 -717.838

II 0.957 0.155 0.161 0.162 9.828 6.094 3.429 6.648 -804.636

III 0.249 1.201 1.153 0.946 1.999 1.490 1.310 6.412 -822.131

IV 0.067 0.119 0.111 0.090 19.683 16.286 15.236 6.789 -1410.667

Independent
Power - 1.479 1.359 1.206 1.129 1.119 1.107 5.254 -221.197

Log-linear - 0.126 0.105 0.081 17.880 17.698 17.978 6.602 -281.749

To carry out the reliability analysis, the estimated parameters are plugged into (13).
Figure 10 gives the PDF and reliability function of the system’s failure time, where we
assume three PCs have relatively low failure thresholds: 3.15, 2.45, and 1.40 (in inches
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(a) Q-Q plots under scenario IV model

(b) Estimated mean degradation path

Figure 9: Summary of fatigue crack-size data analysis results: Q-Q plots under scenario IV and the estimated
mean degradation path.

×10−1), respectively. In addition, the corresponding 90% confidence bands are also provided.
Based on the failure thresholds, the actual average failure time is determined to be 5.833,
while the predicted average MTTF value is 5.087. The calculated average RRMSE between
the actual and predicted values is 0.147.

7. Conclusion

In this study, we introduce a novel multivariate reparameterized IG process model.
It adopts the common-effect approach, wherein the degradation of the marginal process is
decomposed into two independent components—an individual intrinsic part and a separate
common-effect part that applies to all the marginals uniformly. In a physical sense, this
common-effect term has a meaningful interpretation, suggesting that the interdependence
among PCs stems from a shared failure mechanism or is influenced by common operating
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Figure 10: Reliability function and PDF for fatigue crack-size data.

environmental conditions. Statistically, the quantity of model parameters scales in a linear
fashion with the number of PCs, offering flexibility for expanding the model into high-
dimensional scenarios. To facilitate applicability, we provide the GL quadrature method to
approximate the system reliability function, the EM algorithm for point estimates, as well
as the parametric bootstrap approach for interval estimates. Through the simulation and
case studies, the efficacy of our proposed methodology has been demonstrated. The main
findings demonstrate that: a) Increasing the sample size significantly enhances the accuracy
of point estimates, leading to more precise parameter values; b) Interval estimates based
on the Bootstrap method can achieve reasonable CPs across all combinations; c) Failing to
account for the interdependence among PCs within the model introduces substantial biases
in the estimation of the MTTFs.

In practice, PC-specific effects in certain systems may display non-monotonic behavior.
Examples include the capacity of lithium batteries (Zhang et al., 2023) and the light intensity
of light emitting diodes (Ye et al., 2013). Given these observations, we can consider extending
the proposed model. Specifically, Xk(t) could be modeled by a Wiener process, and the
common effect by an rIG process. This configuration leads to the degradation process of the
k-th PC being represented by the following convolution integral:

fYk
(yk) = frIG (z) ∗ fW (yk) =

∫ yk

0

frIG (z) fW (yk − z) dz,

where fW (·) represents the PDF for degradation values derived from the Wiener process. Due
to the absence of an explicit solution for the distribution of Yk, approximations such as the
GL quadrature method become essential. Addressing the challenges in parameter estimation,
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the complexity of the model increases as the log-likelihood function, represented in (17), may
not always be expressed in closed form. This complexity makes it difficult to directly apply
methods like the EM algorithm. To solve these complexities, we may employ likelihood-free
methods for statistical inference, such as approximate Bayesian computation (Blum, 2010)
or synthetic likelihood approaches (Frazier et al., 2023). Moreover, the framework presented
can be further extended to applications in system design, maintenance, and optimization.
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