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Abstract

Traditionally, Gaussian assumption, implied by the Wiener process, is widely admitted for
modeling degradation processes. However, when degradation data exhibit heavy tails, this
assumption is not suitable. To overcome this limitation, this article proposes a novel class
of tail-weighted multivariate degradation model, which is built upon Student-t process. The
model is able to account for both between-unit variability and process dependency, while
allows adjusting the tail heaviness through tuning the parameter of the degree of freedom.
For reliability assessment, we derive the system reliability function and present an efficient
Monte Carlo method for its evaluation. Further, we introduce an expectation-maximization
algorithm for parameter estimation and design a bootstrap method for interval estimation.
Comprehensive simulation studies are conducted to validate the effectiveness of the inference
method. Finally, the proposed methodology is applied to analyze two real-world degradation
datasets.
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1. Introduction

1.1. Background

In engineering practice, degradation tests are commonly utilized to promptly identify
the real-time quality status, enabling reliability assessments for long-lifespan products (Zhao
et al., 2021; Chen et al., 2019). Examples of typical application include laser devices (Meeker
et al., 2022), batteries (Zhao et al., 2023; Peng et al., 2019), and fatigue cracks (Fang
et al., 2022). To accurately assess the overall quality of these products, the examination of
multiple performance characteristics (PCs) is often entailed. And these PCs tend to exhibit
strong correlations due to the stochastic nature of degradation processes. Furthermore, a
product may encounter rare events during its operation. For example, electronic devices
can be vulnerable to interference from nearby equipment or other sources of electromagnetic
emissions. Abrupt voltage pulses, such as power fluctuations or lightning strikes, can have
a significant impact on the operation of electronic devices (Peng and Cheng, 2020). When
such rare events occur, from a statistical point of view, the PCs will exhibit heavy-tail
characteristics. In response to these concerns, our objective is to develop a tail-weighted
multivariate degradation model. The subsequent example delves into these points in greater
detail, providing further incentive for our investigation.

1.2. Motivation

Permanent magnet brakes (PMBs), a type of braking system, use permanent magnets
to generate the braking force. It achieves braking by clamping a magnetic yoke through
actuating the rotor (Kou et al., 2021). To investigate the product’s reliability, 30 specimens
of PMBs as braking servo motors in injection molding machines were subjected to a degra-
dation test in a typical high-temperature environment. In this study, the malfunction of
PMBs, characterized by the loss of magnetization (demagnetization), is represented by two
PCs: braking torque (PC1) and response time (PC2). The degradation of these two PCs
was measured at three-day intervals throughout the two-month experimental period. Figure
1(a) demonstrates the degradation paths of the PCs, while Figure 1(b) presents a scatter
plot of degradation increments and fitted empirical contour lines. Clearly, the scatter plot
indicates a positive correlation between the two PCs and the non-elliptical trend in the tail
region of the contour plane implies non-Gaussian features with tail dependency. Further-
more, we fit the data at two arbitrary time points (t = 9 and 18) with both normal and
Student’s t distributions, and Figure 2 displays quantile-quantile (Q-Q) plots for each PC. It
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Figure 1: PMB dagradation data.

is obvious that the sample data points exhibit a curved (or S-shaped) pattern, suggesting the
skewness and the departure from normality. And their proximity to the theoretical lines of
the Student’s t distribution (i.e., dashed lines) confirms this trend. Thus, all the aforemen-
tioned phenomena motivate us to establish a model for modeling tail-weighted multivariate
degradation processes.

1.3. Related literature
In the existing literature, comprehensive studies have been conducted on the degra-

dation analysis of single PC products, employing frameworks such as general path models
and stochastic process models. The introduction of the general path model to degradation
analysis was pioneered by Lu and Meeker (1993), and subsequent research can be found in
(Bae and Kvam, 2004; Fan et al., 2012). Unlike the general path model, stochastic process
models efficiently handle the introduced randomness from inherent variability and environ-
mental factors in the degradation process. Three primary classes of stochastic degradation
processes are widely discussed in the literature—the Wiener process (Zhai and Ye, 2018;
Zhang et al., 2023; Zhai et al., 2024), the Gamma process (Yao et al., 2024; Chen and Ye,
2018), and the inverse Gaussian (IG) process (Peng et al., 2014; Zhuang et al., 2024). A
comprehensive overview of degradation models can be found in (Ye and Xie, 2014; Si et al.,
2011).

As products become more complex, scholars are increasingly delving into the degra-
dation analysis of sophisticated systems with two or more PCs. For example, Wang et al.
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(b) t = 18

Figure 2: Normal Q-Q plot for t = 9 and 18 of PMB data, where the black dotted line is the Student’s t
distribution, and the grey solid line is the normal distribution.

(2015) constructed a multi-dimensional Wiener degradation model to make a reliability anal-
ysis for fatigue crack-size (FCS) data. Lu et al. (2020) proposed a multivariate general path
model to analyze degradation data involving multiple PCs. The model’s applications are ex-
tended to both coating degradation data and Device-B data. Fang et al. (2022) presented a
multivariate IG process with correlated random effects, and presented theoretical properties
for the analysis of system failure time. A bivariate degradation model was introduced by
Xu et al. (2018), where Wiener processes were employed to model the marginal degradation
processes. Additionally, a shared random effect was incorporated to capture the dependence
between the two degradation processes. A common stochastic time scale was introduced by
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Zhai and Ye (2023) to characterize dependence stemming from the dynamic operating en-
vironment. Zheng et al. (2023) explored reliability analysis using a bivariate degradation
model that accounts for random initial states and their correlation with degradation rates.
Jiang et al. (2023) utilized copula functions to capture dependencies among PCs and con-
ducted reliability analysis on a mechanical system. They also developed a predictive model
for remaining useful life. In addition to the aforementioned papers, other works related to
multivariate degradation processes include Fang and Pan (2023); Sun et al. (2021); Liu et al.
(2021). For a comprehensive overview, please refer to Hong et al. (2018); Kang et al. (2020).

Previous research has made noteworthy strides in multivariate degradation modeling,
primarily emphasizing the Wiener process owing to its favorable physical interpretability and
mathematical properties. Nevertheless, dynamic fluctuations in environmental conditions
can induce anomalous degradation increments in PCs, deviating from the assumption of nor-
mality, as illustrated in the motivating example in Section 1.2. Persisting with modeling the
Wiener process for such degradation data may result in suboptimal fitting, given its poten-
tial challenges in accommodating the non-normal characteristics present in the degradation
data. To the best of our knowledge, there is currently a scarcity of scholarly investigations
that account for the heavy-tailed characteristics observed during the multiple-dependent
degradation processes. To bridge this research gap, our goal is to propose a robust statisti-
cal model to characterize the degradation processes of multiple dependent PCs. Compared
to the Wiener process, the tail-weighted process exhibits greater flexibility and holds signif-
icant advantages in handling and adapting to outliers, particularly in the fields of finance
and economics. However, its application within the reliability domain is notably scarce,
especially in characterizing the degradation paths of complex systems. Peng and Cheng
(2020) first constructed a univariate Student-t model to analyze the degradation data of a
single PC. Our research extends this model to a multivariate setting, enabling the simul-
taneous modeling of the interdependent degradation processes of multiple PCs. The main
contributions and innovations of this article are as follows:

• Built upon the Student-t process, a multivariate degradation model that can account
for both between-unit variability and process dependency has been proposed. The
model is robust enough to accommodate tail-weighted data by allowing for the adjust-
ment of tail heaviness through tuning the parameter of the degrees of freedom.

• The model possesses some nice statistical properties so that a tractable expectation
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maximization (EM) algorithm triggered by a nonlinear least squares (NLS) step has
been developed for parameter estimation. Additionally, we have designed a bootstrap
approach for interval estimation.

• We have derived the system reliability function and propose a Monte Carlo (MC)
method to address the computational challenges associated with its evaluation. Thor-
ough investigations on two case studies are conducted to demonstrate the applicability
of the proposed approach.

1.4. Overview

This article is structured as follows: Section 2 introduces the tail-weighted multivariate
degradation model and utilizes the MC method for reliability estimation. In Section 3, we
propose a two-stage parameter estimation method, and the performance of the estimation
method is demonstrated through numerical simulation in Section 4, and two examples il-
lustrating the application of the method are provided in the subsequent Section 5. Finally,
our findings are summarized in Section 6.

2. Tail-weighted multivariate degradation model

2.1. A new multivariate degradation model

Consider a system that has p PCs. Let Y (t) = (Y1(t), Y2(t), . . . , Yp(t))
′ represent the

degradation values of the p PCs of a system at time t (t ≥ 0), where Yj(t) denotes the
degradation value of the j-th PC at time t. The model considered in this paper is formulated
as follows: 

Yj(t) = θjΛj(t) +
δj√
τ
Wj(Λj(t)), j = 1, . . . , p,

Θ = (θ1, θ2, . . . , θp)
′ ∼ Np(η,Σ0/τ),

τ ∼ G(ν/2, 2/ν),

(1)

where θjs are the drift parameters, δjs denote the diffusion parameters, and Λj(t)s signify
the time scale transformation functions, which are non-negative, monotonically increasing
functions of time t. Wi(·)s are the standard Brownian motions and are independent of each
other. The vector Θ captures the random effects assigned to the drift parameters, addressing
the interdependence among the degradation processes of the p PCs. We assume Θ follows
a p-dimensional normal distribution with mean η = (η1, η2, . . . , ηp)

′ and covariance matrix
6



Σ0/τ . Here, ηj > 0, and Σ0 = (σij)p×p is a positive definite matrix. We denote σjj = σ2
j , is

the j-th element on the diagonal of the matrix Σ0. The probability of θj being negative can
be negligibly small when ηj/σj ≫ 0, which is often a reasonable assumption in practice (Lu
and Meeker, 1993; Peng and Cheng, 2020). The latent variable τ acts as a scale-weighted
parameter, adjusting the tail flatness of the joint distribution Y (t) at time t. We assume
that τ follows a gamma distribution with shape parameter ν/2 and scale parameter 2/ν,
and the probability density function (pdf) of τ is given by:

fG(τ) =
τ ν/2−1

Γ(ν/2)(2/ν)ν/2
exp(−ντ/2), τ, ν > 0,

where Γ(·) is the gamma function.
Let Σ(t) = diag{Λ1(t), . . . ,Λp(t)} and Ωδ = diag{δ21, . . . , δ2p}. Based on the model (1),

by integrating out Θ and τ , the joint distribution of Y (t) at time t is

Y (t) ∼ Tp (Λη(t),U (t), ν) , (2)

where Tp (·, ·, ν) denotes the p-dimensional Student’s t distribution with ν degrees of freedom,
Λη(t) = (η1Λ1(t), . . . , ηpΛp(t))

′ and U (t) = Σ(t)Σ0Σ(t) + Σ(t)Ωδ, It is worth noting that
when ν = 1, the Student’s t distribution becomes a multivariate Cauchy distribution, and
when ν → ∞, the Student’s t distribution reduces to a multivariate normal distribution.

Assume that we take m measurements for the j-th PC, and the measurement time
t(m) = (t1, . . . , tm)

′. The corresponding degradation values of the j-th PC are denoted as
Yj(t(m)) = (Yj(t1), . . . , Yj(tm))

′. By integrating out of θj and τ , the joint distribution of
Yj(t(m)) is

Yj(t(m)) ∼ Tm

(
ηjΛj(t(m)), Vj(t(m)), ν

)
, (3)

where Λj(t(m)) = (Λj(t1), . . . ,Λj(tm))
′, Vj(t(m)) = σ2

jΛj(t(m))Λj(t(m))
′ + δ2jQ(t(m)) and

Q(t(m)) = [min{Λj (ts1) ,Λj (ts2)}]1≤s1,s2≤m. The mean and variance of the degradation pro-
cess Yj(t) are ηjΛj(t), and ν/(ν − 2)Vj(t), respectively. Thus, at any given time t, the
Pearson correlation coefficient between Yj1(t) and Yj2(t) can be expressed as

ρ [Yj1(t), Yj2(t)] = ρj1j2(t) =
σj1j2√

σ2
j1
+ δ2j1/Λj1 (t)

√
σ2
j2
+ δ2j2/Λj2 (t)

, (4)

where σj1j2 = ρj1j2σj1σj2 . This equation reveals the dynamic correlation between any two
PCs. Initially, there is no correlation between the components (i.e., ρj1j2(0) = 0), but as
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time progresses and degradation advances, the correlation gradually strengthens, eventually
approaching a long-term stable value ρj1j2(∞) = ρj1j2 .

Remark 1: Based on equations (2) and (3), it can be observed that model (1) possesses
the capability to detect outliers, both within a single PC and across multiple PCs. The
parameter ν serves as a control parameter that determines the probability of outlier presence
when monitoring the degradation of these PCs. Varying values of ν allow for adjustment
in the sensitivity of the model towards outliers. A smaller value of ν enhances robustness
against outliers due to heavier tails in Student’s t distribution. Consequently, even if there
are outliers present in the data, reasonable estimates for model parameters can still be
obtained. Conversely, a larger value of ν reduces sensitivity towards outliers and focuses
more on modeling normal behavior within the data. This may result in ineffective capture
and modeling of outliers, leading to inaccurate or misleading outcomes. Therefore, careful
selection of ν enables a balance between robustness against outliers while maintaining an
appropriate level of sensitivity towards normal behavior. This facilitates effective monitoring
and analysis of degradation patterns across multiple PCs by considering both normal and
outlier behaviors. This paper, based on data-driven methods, uses a two-stage statistical
inference approach to estimate model parameters and the degrees of freedom ν, as detailed
in Section 3.

2.2. Reliability analysis
Let ωj denote the failure threshold level for the j-th PC. Consequently, the lifetime

of the j-th PC is defined as the time at which its degradation first surpasses the failure
threshold (Di Nardo et al., 2001). That is,

Tj = inf{t : Yj(t) ≥ ωj}.

Given θj and τ , Yj(t) follows a Wiener process. As a result, the lifetime Tj conforms to a
transformed inverse Gaussian distribution, specifically, Λj(Tj) ∼ IG(ωj/θj, ω

2
j

√
τ/δj). The

conditional pdf of Tj is expressed as

fj(t|θj, τ) =
ωj√

2πδ2jΛ
3
j(t)/τ

exp
{
−(ωj − θjΛj(t))

2τ

2δ2jΛj(t)

}
dΛj(t)

dt . (5)

The joint pdf for T1, T2, . . . , Tp can then be calculated as:

f(t1, t2, ..., tp) =

∫ ∫ p∏
j=1

fj(tj|θj, τ)f(Θ|τ)f(τ)dΘdτ. (6)
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We assume a competitive relationship among the p PCs, considering the system to have
failed when any PC reaches the failure threshold level. Thus, the lifetime of the system is
defined as:

Tω = inf {t : Y1(t) ≥ ω1 or · · · or Yp(t) ≥ ωp} = min{T1, . . . , Tp}.

Then the reliability of the system at time t is

RTω(t) = P{Tω > t} = P{T1 > t, . . . , Tp > t}

=

∫ +∞

t

· · ·
∫ +∞

t

f(t1, t2, ..., tp)dt1 · · · dtp.
(7)

Considering the computational challenges associated with evaluating the integral in (7), we
employ an MC method to estimate RTω(t). In essence, the MC approach involves generat-
ing random samples from the distribution of interest, in this case, the joint distribution of
T1, T2, . . . , Tp as defined in (6). Then we can find the lifetime of the system, and further esti-
mate the reliability function RTω(t). The procedure of the MC method can be implemented
through Algorithm 1.

Algorithm 1: Reliability function estimation by MC approach.

Input: t, ν,Σ0, ηj, ωj,Λj(t), and δj, j = 1, . . . , p.
Output: RTω(t).

for q = 1 to Q do
Generate τ ∗ from G(ν/2, 2/ν);
Generate Θ∗ =

(
θ∗1, . . . , θ

∗
p

)′ following Np(η,Σ0/τ
∗);

Given the generated θ∗j and τ ∗, generate Tj from (5), denoted as T ∗
j ;

Obtain T ∗
ωq = min

{
T ∗
1 , . . . , T

∗
p

}
.

end
Estimate RTω(t) by

∑Q
q=1 I{T ∗

ωq≥t}/Q, where I{·} denotes the indicator function.

This MC methodology provides a computationally feasible solution to the analytical
integration complexity encountered in this context. By circumventing the need for explicit
analytical solutions, we leverage statistical sampling to gain insights into the system’s re-
liability, making the computational process more manageable and adaptable to complex
models.
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3. Statistical inference

Assuming that there are n systems involved in an experiment, the degradation of each
system’s PCs is measured at different time points: ti,1, . . . , ti,mi

, and the degradation values
of the p PCs at time ti,k are denoted as Yi,k = (Yi,1,k, . . . , Yi,p,k)

′, where i = 1, . . . , n and
k = 1, . . . ,mi. Let ∆Yi,k = Yi,k − Yi,k−1, where ti,0 = 0 and Yi,0 = 0. Based on model (1),
we know that 

∆Yi,k|Θi, τi ∼ Np

(
∆Σ(ti,k)Θi,

Ωδ

τi
∆Σ(ti,k)

)
,

Θi ∼ Np(η,Σ0/τi),

τi ∼ G(ν/2, 2/ν),

(8)

where ∆Σ(ti,k) = Σ(ti,k)−Σ(ti,k−1). For the j-th time scale transformation function Λj(t),
we assume a parametric form with an unknown parameter γj, represented as Λj(t; γj). The
choice of the specific form for Λj(t; γj) can be determined based on engineering experience or
empirical investigation. Commonly used forms include the power law function Λj(t; γj) = tγj

and the exponential function Λj(t; γj) = exp(γjt) − 1. Let γ = (γ1, γ2, ..., γp)
′. Then

the model parameters are Φ = (η,Ωδ,Σ0,γ, ν). Let ∆Yi = {∆Yi,k, k = 1, . . . ,mi} and
Y = {∆Yi, i = 1, . . . , n}. Then the likelihood function of Φ is expressed as:

ℓ(Y|Φ) =
n∏

i=1

∫ ∫ [ mi∏
k=1

τ
p/2
i

(2π)p/2
∣∣∣Ωδ∆Σ(ti,k)

∣∣∣1/2
× exp

{
−τi
2
(∆Yi,k −∆Σ(ti,k)Θi)

′(Ωδ∆Σ(ti,k)
)−1

(∆Yi,k −∆Σ(ti,kΘi)
}]

× τ
p/2
i

(2π)p/2|Σ0|1/2
exp

{
−τi
2
(Θi − η)′Σ−1

0 (Θi − η)
}

× τ
ν/2−1
i

Γ(ν/2)(2/ν)ν/2
exp

{
−ν
2
τi

}
dΘidτi.

(9)

Given the complexity of (9) and its involvement in intractable integration, the direct max-
imization of log ℓ(Y|Φ) to obtain the estimate of Φ proves to be a challenging task. In
light of this complexity, the EM algorithm stands out as a powerful tool for handling high-
dimensional parameter estimation problems. By alternating between the E-step and M-step,
one can manage latent variables and optimize complex likelihood functions (Dempster et al.,
1977; Wu, 1983). It is worth noting that the parameters in this model typically manifest
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Figure 3: Proposed two-stage algorithm for model parameter estimation.

as vectors and matrices, introducing additional intricacies into the estimation process. Fur-
thermore, managing parameters associated with the time-scale transformation function Λj(t)

during iterations may present specific challenges.
Consequently, we propose a novel two-stage parameter estimation method to solve this

problem, as illustrated in Figure 3. Based on the data Y, we initially employ the NLS
method to estimate the parameters γ and η (see Section 3.1 for details). Here, γ serves
as the final estimate, while η can be utilized as the initial value for the subsequent steps.
For the estimation of other parameters Ψ = (η,Σδ,Σ0, ν), we utilize the EM algorithm,
considering Θi and τi as missing data, achieved through iterative execution of the E-step
and M-step until convergence is reached (Wan and Bai, 2024), as detailed in Section 3.2.
Ultimately, following the two-stage algorithm, we obtain point estimates for all parameters
in the proposed model.

3.1. Nonlinear least squares estimation

NLS is a statistical method used for estimating the parameters of nonlinear regression
models. The estimation is obtained by minimizing the sum of squared residuals (SSR), where
residuals are the differences between the observed values and the values predicted by the
model. In our study, E[Yj(t)] = ηjΛj(t; γj), which indicates that the relationship between
the degradation values of the j-th PC and time t. Given the observed data {Yi,k, i =
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1, . . . , n, k = 1, . . . ,mi}, we define the SSR for the j-th PC as follows:

SSRj =
n∑

i=1

m∑
k=1

(Yi,j,k − ηjΛj(ti,k; γj))
2 , j = 1, . . . , p. (10)

The estimate (γ̂j, η̂j) can be obtained by minimizing SSRj, that is,

(γ̂j, η̂j) = arg min
γj ,ηj

SSRj. (11)

Estimates (γ̂j, η̂j) can be derived using optimization techniques like Gauss-Newton, Levenberg-
Marquardt, or gradient-based methods, which are favored for their rapid convergence, and
suitability for complex, high-dimensional nonlinear optimization problems. Once these es-
timates {(γ̂j, η̂j), j = 1, . . . , p} are obtained, Λj(t; γ̂j) can be treated as a known function,
and η̂j can serve as an initial value in the EM algorithm. To streamline the discussion, we
will use the notation Λj(t) to represent Λj(t, γ̂j) in the subsequent subsections.

3.2. EM algorithm

To alleviate the complexity of integration in (9), we consider (Θ, τ ) = {Θi, τi, i =

1, . . . , n} as the missing data. Let ∆Λj(ti,k) = Λj(ti,k) − Λj(ti,k−1). Based on the complete
data {Y,Θ, τ}, the log-likelihood function of Ψ is

ℓ(Y,Θ, τ |Ψ) =
n∑

i=1

{
ℓc +

((mi + 1)p+ ν

2
− 1
)

ln τi −mi

p∑
j=1

ln δj

− 1

2

p∑
j=1

mi∑
k=1

ln∆Λj(ti,k)

}
− 1

2

n∑
i=1

τi

(
mi∑
k=1

ℓi,k + ℓi,0 + ν

)
,

(12)

where

ℓc = −(mi + 1)p

2
ln 2π − 1

2
ln |Σ0| − lnΓ(

ν

2
) +

ν

2
ln(ν

2
),

ℓi,0 = (Θi − η)′Σ−1
0 (Θi − η),

ℓi,k = (∆Yi,k −∆Σ(ti,k)Θi)
′(Ωδ∆Σ(ti,k)

)−1
(∆Yi,k −∆Σ(ti,k)Θi).

The EM algorithm acquires the estimate for Ψ through iterative execution of the E-step
and M-step until convergence is achieved. Assuming that the optimal solution in the M-step
at the s-th iteration is denoted as Ψ(s), in the subsequent (s + 1)-th iteration, the E-step

12



involves computing the following Q-function:

Q
(
Ψ | Ψ(s)

)
=E

[
ℓ(Ψ | Y,Θ, τ) | Y,Ψ(s)

]
=

n∑
i=1

{
ℓc +

(
(mi + 1)p+ v

2
− 1

)
E
[
ln τi|∆Yi,Ψ

(s)
]
−mi

p∑
j=1

ln δj

− 1

2

p∑
j=1

mi∑
k=1

ln∆Λj(ti,k)

}
− 1

2

n∑
i=1

{ mi∑
k=1

E
[
τiℓi,k|∆Yi,Ψ

(s)
]

+ E
[
τiℓi,0|∆Yi,Ψ

(s)
]
+ νE[τi|∆Yi,Ψ

(s)]

}
,

(13)

where the expectations are calculated concerning the conditional distribution f(Θi, τi |
∆Yi,Ψ

(s)). (13) involves four conditional expectations: E[ln τi|∆Yi,Ψ
(s)], E[τiℓi,k|∆Yi,Ψ

(s)],
E[τiℓi,0|∆Yi,Ψ

(s)], and E[τi|∆Yi,Ψ
(s)]. We need the following results to derive the condi-

tional expectations.

Theorem 1. Given ∆Yi, the conditional distribution of Θi and τi can be decomposed into
the following two distributions.

(a) Θi|∆Yi, τi ∼ Np (µi,ΣΘi
/τi), where ΣΘi

=
[
Σ−1

0 +Ω−1
δ Σ(timi

)
]−1 and µi = ΣΘi

(Σ−1
0 η+

Ω−1
δ Yi,mi

).

(b) τi|∆Yi ∼ G
(

mip+ν
2

, 2
Ki,1−Ki,2+ν

)
, where Ki,1 =

∑mi

k=1 ∆Y ′
i,kΩ

−1
δ ∆Σ−1(ti,k)∆Yi,k+η⊤Σ−1

0 η

and Ki,2 = µ′
iΣ

−1
Θi
µi.

The proof of Theorem 1 is provided in the Appendix A. From Theorem 1 (b), E(τi|∆Yi,Ψ
(s))

and E(ln τi|∆Yi,Ψ
(s)) used in the E-step can be easily computed, which are

E(τi|∆Yi,Ψ
(s)) =

mip+ ν(s)

K
(s)
i,1 −K

(s)
i,2 + ν(s)

,

E(ln τi|∆Yi,Ψ
(s)) = ψ

(
mip+ ν(s)

2

)
− ln

(
K

(s)
i,1 −K

(s)
i,2 + ν(s)

2

)
,

(14)

where ψ(x) = d lnΓ(x)/dx represents the digamma function, K(s)
i,1 and K

(s)
i,2 are Ki,1 and

Ki,2 with the parameters Ψ substituted by Ψ(s).

Theorem 2. Given the joint distributions of Θi and τi in Theorem 1, if the solution in the
M-step at the s-th iteration is Ψ(s), then

E
(
τiℓi,0|∆Yi,Ψ

(s)
)
= tr

(
Σ−1

0 Σ
(s)
Θi

)
+ E

(
τi|∆Yi,Ψ

(s)
)(

µ
(s)
i − η

)′
Σ−1

0

(
µ

(s)
i − η

)
,
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E
(
τiℓi,k|∆Yi,Ψ

(s)
)
= tr

(
∆Σ(ti,k)Ω

−1
δ Σ

(s)
Θi

)
+ E

(
τi|∆Yi,Ψ

(s)
)

×
(
µ

(s)
i −∆Σ−1(ti,k)∆Yi,k

)′
(Ωδ∆Σ−1(ti,k))

−1
(
µ

(s)
i −∆Σ−1(ti,k)∆Yi,k

)
.

The proof of Theorem 2 is given in the Appendix B. Given the results in theorems 1
and 2, the Q-function can be completely determined. Then we update the optimal solution
in the M-step at the (s+ 1)-th iteration as

Ψ(s+1) = arg max
Ψ

Q
(
Ψ | Ψ(s)

)
. (15)

This can be accomplished by taking the partial derivatives of Q
(
Ψ | Ψ(s)

)
with respect to

the parameters, and solving these equations.

Theorem 3. Given the solution in the M-step at the s-th iteration is Ψ(s), the solution of
(15) can be updated as follows:

η(s+1) =

∑n
i=1 µ

(s)
i E

(
τi|∆Y i,Ψ

(s)
)

∑n
i=1 E

(
τi|∆Y i,Ψ

(s)
) ,

Σ
(s+1)
0 =

∑n
i=1

[
Σ

(s)
Θi

+ E(τi|∆Yi,Ψ
(s))(µ

(s)
i − η(s+1))(µ

(s)
i − η(s+1))′

]
n

,

Ω
(s+1)
δ =

1∑n
i=1mi

n∑
i=1

mi∑
k=1

[
∆Σ(ti,k)Σ

(s)
Θi

+ E(τi|∆Yi,Ψ
(s))

× (µ
(s)
i −∆Σ−1(ti,k)∆Yi,k)(µ

(s)
i −∆Σ−1(ti,k)∆Yi,k)

′
]
.

The proof of Theorem 3 is given in the Appendix C. Besides, the update of ν can be
implemented by maximizing the following function:

−2 lnΓ(ν/2) + ν ln(ν/2) + ν

n

n∑
i=1

[
E
(

ln τi|∆Y i,Ψ
(s)
)
− E

(
τi|∆Y i,Ψ

(s)
)]
. (16)

Given the initial values Ψ(0), the EM algorithm can then be executed until convergence
according to a specified criterion. Consequently, the ML estimate for Ψ can be obtained.
Formally, the EM algorithm in our study can be implemented through algorithm 2.

3.3. Interval estimation

In addition to point estimation, there exists a significant interest in establishing in-
terval estimates for the model parameters Ψ. These interval estimates take into account
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Algorithm 2: Implementation of the proposed EM algorithm.

Input: Y,Ψ(0), ϵ.
Output: Ψ̂ = {η̂, Σ̂δ, Σ̂0, ν̂).

while | | Ψ(s+1) −Ψ(s) | | ≥ ϵ do
E-step:
Compute E[τi|∆Yi,Ψ

(s)] and E
[
ln τi|∆Yi,Ψ

(s)
]

by (14);

Compute E
[
τiℓi,0|∆Yi,Ψ

(s)
]

and E
[
τiℓi,k|∆Yi,Ψ

(s)
]

by Theorem 2;
M-step:
Update Ψ(s+1) by Theorem 3 and (16).

end

uncertainties and variability in the estimation process, providing a plausible range for the
parameters (Luo et al., 2020). This is particularly important as it allows the practitioners
to assess the precision and reliability of their parameter estimates. To construct these inter-
val estimations, it is common practice to utilize asymptotic theories. However, due to the
complexity involved in evaluating the Fisher information matrix for the proposed model, we
instead adopt the bootstrap method to obtain reliable interval estimates. The outline of the
bootstrap procedure is provided in Algorithm 3. After obtaining the B bootstrap estimates{
Ψ̂

∗
1, . . . , Ψ̂

∗
B

}
, we can proceed to construct an approximate 100(1 − α)% bootstrap confi-

dence interval for a function of the parameters h(Ψ). The interval estimation is constructed
as follows: [

h
(
Ψ̂

∗)
(αB/2)

, h
(
Ψ̂

∗)
((1−α/2)B)

]
,

where h
(
Ψ̂

∗)
(b)

denotes the b-th order statistic among
{
h
(
Ψ̂

∗)
1
, . . . , h

(
Ψ̂

∗)
B

}
.

4. Simulation studies

This section evaluates the estimation performance of model parameters, correlation
coefficients, and reliability through numerical simulations. We consider degradation with
two or three PCs (i.e., p = 2 or 3). Both linear degradation paths (i.e., Λ(t) = t) and
nonlinear degradation paths (i.e., Λ(t) = tγ) are examined. Four combinations of p and
Λ(t) as outlined in Table 1, which also includes the corresponding parameter values. To
characterize the heavy-tail features of the degradation values, we set the degrees of freedom
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Algorithm 3: Bootstrap algorithm procedure.
Input: Point estimate Ψ̂ and γ̂.
Output: B resamples of the estimate

{
Ψ̂

∗
1, . . . , Ψ̂

∗
B

}
.

1 for b = 1 to B do
2 for i = 1 to n do
3 Generate τ̃i from G (v̂/2, 2/v̂);
4 Generate Θ̃ from Np(η̂, Σ̂0/τ̃ );
5 for k = 1 to mi do

6 Given Θ̃i and τ̃i, generate ∆Ỹi,k from Np

(
∆Σ(ti,k)Θ̃i,

Ωδ

τ̃i
∆Σ(ti,k)

)
;

7 end
8 end
9 Obtain the bootstrapped degradation data Ỹ;

10 Obtain Ψ̂
∗
b based on Ỹ using the proposed EM algorithm.

11 end

to ν = 5. Assuming periodic measurements of degradation for n units at t = 5, 10, ..., 5mi,
where all mi are uniform (m1 = · · · = mn = m), we assess the influence of sample size on
inference with variations in n = 10, 20, 30 and the number of observations m = 10, 20, 30.
For each setting, we conduct 1000 replications of data generated from the simulated model
and fit them using the EM algorithm. The stopping criterion for iterations is set with an
error tolerance of ϵ = 10−5. The simulations run on a notebook computer with an Intel
Core i7 processor operating at 2.3 GHz and 16GB of RAM under the Windows 11 operating
system. The computation time for parameter estimation in all sample size combinations is
within one minute, demonstrating satisfactory performance.

4.1. Performance evaluation of model parameters

To evaluate the overall quality of the EM estimation results, we calculate the root
mean squared error (RMSE) for different combinations of (n,m). Due to space constraints
and the consistency of conclusions, we provide scatter plots for scenarios I and III (with
p = 2), illustrating results for various combinations of Λ(t) and (n,m). Additional results
for p = 3 are available in the Supplementary Section S1. These plots reveal minimal bias
in all parameters. Moreover, as n increases with fixed m, RMSE decreases, and vice versa.
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Table 1: Four combinations of p and Λ(t), along with their corresponding parameter setting.

Scen. Λ(t) p η1 η2 η3 δ21 δ22 δ23 σ2
1 σ2

2 σ2
3 σ12 σ13 σ23 γ1 γ2 γ3

I
t

2 11 12 - 0.5 1.5 - 1 2 - 0.75 - - - - -

II 3 11 12 13 0.4 0.6 0.8 1 2.25 4 0.75 -1.0 1.2 - - -

III
tγ

2 11 12 - 0.5 1.5 - 1 2 - 0.75 - - 1.1 1.2 -

IV 3 11 12 13 0.4 0.6 0.8 1 2.25 4 0.75 -1.0 1.2 0.8 1 1.2

This trend suggests that the model exhibits satisfactory fitting performance, particularly for
moderate values of n and m.

Validating the interval estimation performance of the bootstrap procedure as detailed
in Section 4 with B = 1000, we implement it on every synthetic dataset generated in
the preceding simulations. Figure 5 illustrates the coverage probability (CP) of the 95%
confidence intervals (CIs) for the model parameters by the bootstrap in scenarios I and
III, where the dashed line represents the 95% horizontal line. Notably, estimations for
{η, δ,γ} demonstrate excellent performance, consistently achieving CP values exceeding
90% across all combinations. While CP for σ may experience a slight reduction due to
sampling randomness and the intricacies of matrix computations, the results remain within
acceptable ranges. Notably, as both n and m increase, the CP for all parameters shows a
continuous improvement.

4.2. Performance evaluation of correlation coefficients

Furthermore, we evaluate the performance of the proposed statistical inference methods
in estimating correlation coefficients. We fix m = 20 to examine how the evaluation of
correlation coefficient performance varies with different n, while other parameters remain
consistent with Section 4.1. Under these settings, the average absolute correlation coefficient
among PCs across the four scenarios is 0.482, characterizing the dependencies between PCs.
Figure 6 displays the RMSE (×10−2) of correlation estimates across different sample sizes
and scenarios as time progresses. The RMSE of correlation estimates is relatively small and
decreases with larger sample sizes, similar to the parameter estimation results. Additionally,
as the correlation coefficients stabilize over time, the RMSE values also become stable.
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Figure 4: RMSE (×10−2) for parameter estimators in scenarios I and III.

4.3. Effect of model misspecification

In this section, we perform a simulation study to evaluate the impact of model mis-
specification, specifically focusing on multivariate Wiener process models (ν → ∞) using
EM algorithm for parameter estimation. With the simulated data in each replication, we
perform model inferences and calculate the mean time to failure (MTTF) of the system (Luo
et al., 2024),

MTTF = E(T ) =

∫ ∞

0

RTω(t)dt.
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Figure 5: CP (×100%) for parameter estimators in scenarios I and III.

The failure thresholds for three PCs are assumed to be 150, 300, and 400, respectively.
Figure 7 presents boxplots of RMSE for MTTF estimators under various sample sizes in
scenario IV, with green points indicating the average RMSE. The results show that the
model estimates have a consistently small RMSE, decreasing as the sample size increases. In
comparison to the multivariate Wiener process, the proposed model demonstrates a smaller
average RMSE. Therefore, accurately characterizing the dependent degradation data with
heavy-tailed characteristics of multivariate PCs is crucial for assessing system reliability.
These precise reliability estimates aid in predicting system lifespan effectively, minimizing
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Figure 6: RMSE (×10−2) of correlation estimators across different sample sizes and scenarios.

unnecessary maintenance costs and the risk of production disruptions.

5. Case studies

5.1. PMB degradation data

In this section, we illustrate the implementation of the proposed methodology by ana-
lyzing the PMB degradation data as shown in Figure 1(a). We apply the proposed model
to fit the data, providing two forms of the time-scale transformation function: i) linear form
Λ(t) = t; ii) power form Λ(t) = tγ. These are referred to as models Ml and Mp, respectively.
To assess the superiority of the proposed model, we consider two corresponding multivariate
Wiener process models, denoted as MW

l and MW
p , respectively. These multivariate Wiener

processes are regarded as special cases within the framework described by Fang and Pan
(2023), where the impact of random initial values is not considered. The EM algorithm is
employed for parameter estimation in both models, and the convergence of model inference
is evaluated through trace plots of parameter estimates, as shown in the Supplementary
Section S2.
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Figure 7: RMSE (×10−2) for MTTF estimators under various sample sizes in scenario IV (green points
mean the average RMSEs).

Table 2 provides parameter estimates, 90% CIs, and Akaike Information Criterion (AIC)
values for different models. From these results, it is evident that the AIC values based on
the tail-weighted multivariate model consistently remain lower than the corresponding AIC
values for the Wiener model. Among the four models, the power form of the proposed
model (i.e., Mp) yields the lowest AIC, leading us to consider it as the optimal model for the
PMB data. The estimation results for γ reveal a faster degradation rate for PC2 compared
to PC1, consistent with observations in Figure 1(a). Additionally, the estimation results
for ν indicate that the proposed model effectively captures the heavy-tail characteristics
in the data. Figure 8(a) displays the estimated correlation between Y1(t) and Y2(t) at
various times, based on the proposed model, accompanied by 90% bootstrap CIs. The
estimated correlation coefficients demonstrate an increase over time. Specifically, at t = 20,
the estimated correlation coefficient is ρ12(20) = 0.642, with a 90% CI of (0.429, 0.811),
indicating a moderate correlation between the two PCs. Figure 8(b) illustrates the average
degradation fitting performance of model Mp on the PMB data, demonstrating a satisfactory
fit to the degradation paths. This provides further validation of the effectiveness of the
proposed model.

For reliability analysis, we substitute the estimated parameters into Algorithm 1 and
employ MC methods with Q = 5000 to obtain an approximate reliability function for system

21



Table 2: Parameter point estimation and 90% CI for the PMB data.

Parameter Ml Mp MW
l MW

p

η1
9.166

(8.593, 9.685)
6.883

(6.465, 7.297)
9.369

(8.789, 9.916)
6.998

(6.585, 7.428)

η2
15.095

(14.318, 15.970)
8.311

(7.772, 8.940)
15.412

(14.554, 16.369)
8.432

(7.955, 8.934)

δ21
1.077

(0.999, 1.160)
0.409

(0.346, 0.498)
1.133

(1.074, 1.198)
0.572

(0.542, 0.603)

δ22
2.874

(2.660, 3.096)
0.613

(0.523, 0.741)
2.951

(2.772, 3.108)
0.837

(0.798, 0.886)

σ2
1

1.759
(1.358, 2.156)

0.914
(0.694, 1.174)

1.915
(1.511, 2.335)

1.285
(1.037, 1.581)

σ2
2

2.654
(2.019, 3.329)

1.163
(0.889, 1.490)

2.967
(2.377, 3.692)

1.535
(1.219, 1.871)

ρ12
0.652

(0.440, 0.793)
0.642

(0.429, 0.811)
0.668

(0.449, 0.819)
0.631

(0.412, 0.787)

ν
15.986

(9.726, 30.000)
2.596

(1.792, 3.812)
- -

γ1 -
1.098

(1.085, 1.114)
-

1.098
(1.092, 1.105)

γ2 -
1.202

(1.185, 1.221)
-

1.202
(1.194, 1.210)

AIC 6302.373 2488.158 6386.120 3088.899

failure time. For ease of presentation, we assume that the threshold values for the two PCs
are ω1 = 400 and ω2 = 600, respectively. Figure 9 illustrates the reliability curves of
system failure time based on models Mp and MW

p . Furthermore, we compute the pseudo
failure time (PFT) of the system by determining the minimum time at which the fitted
curve for each PC reaches the threshold value. This can be achieved by simply fitting
the data for each degradation path using ordinary least squares (Peng and Cheng, 2020).
Utilizing the Anderson-Darling (AD) test for model validation, we assess the goodness of fit
for models Mp and MW

p . The p-values for the two models are 0.703 and 0.289, respectively,
indicating strong performance at a significance level of 0.05. However, the proposed model
Mp exhibits a higher p-value, suggesting its superior performance in fitting the PMB data.
This commendable performance can be attributed to the robustness of the proposed model,
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enabling it to handle potential outliers or noise more effectively.
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Figure 9: The estimated reliability of the PMB data.

While the tail-weighted multivariate degradation process excels in handling data with
heavy-tail characteristics, its performance becomes uncertain when modeling data without
heavy-tail features. Therefore, we use the following example to demonstrate the robustness
and flexibility of the proposed model.
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Figure 10: Degradation paths of the FCS data.

5.2. Fatigue crack-size data
The alloy FCS data is obtained from Meeker et al. (2022), and we divide the dataset

into three segments, creating a three-dimensional degradation process (Fang et al., 2022).
For simplicity, we subtract the initial crack size of 0.9, and the resulting degradation paths
over some observation times are depicted in Figure 10. The boxplot indicates the absence
of outliers in the degradation values for the majority of PCs. For such data without strong
heavy-tail features, we utilize the proposed model, fitting it with the exponential time scale
transformation function λ(t) = exp(γt)− 1, denoted as Me. Additionally, the corresponding
multivariate Wiener process model, denoted as MW

e , is considered. Parameters for each
model are estimated using the EM algorithm, and their convergence trace plots can be
found in Supplementary Section S2. Table 3 lists the estimated parameters along with their
respective AIC values for each model. Due to suboptimal fitting results and page constraints,
the outcomes for the Ml and MW

l models are omitted. The estimated parameter ν for model
Me is 27.827, suggesting that the data doesn’t show significant heavy-tail behavior, consistent
with the results in Figure 10. Furthermore, we compare the multivariate IG process (Fang
et al., 2022), where the model’s AIC value of -1074.186 is much higher than our proposed
model. In the AIC model selection, Me performs comparably to MW

e .
Figure 11 displays the estimated correlation coefficient under Me model, accompanied

by 90% bootstrap CIs. At t = 10, ρ12(10) = 0.601, ρ13(10) = 0.608, and ρ23(10) = 0.498,
with 90% CIs of (0.484, 0.768), (0.522, 0.768), and (0.384, 0.706), respectively. These values
indicate a moderate correlation among the three PCs, increasing over time. Assuming
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Table 3: Parameter point estimation and 90% CI for the FCS data.

Model Parameters

Me

η1 η2 η3 δ21 δ22 δ23

0.302
(0.215, 0.482)

0.510
(0.295, 2.003)

0.379
(0.185, 0.806)

0.019
(0.016, 0.030)

0.030
(0.022, 0.061)

0.026
(0.017, 0.039)

σ2
1 σ2

2 σ2
3 σ12 σ13 σ23

0.035
(0.011, 0.076)

0.051
(0.017, 0.166)

0.048
(0.011, 0.106)

0.042
(0.014, 0.060)

0.041
(0.020, 0.067)

0.050
(0.017, 0.074)

γ1 γ2 γ3 ν AIC
0.116

(0.089, 0.139)
0.066

(0.021, 0.097)
0.063

(0.037, 0.101)
27.827

(8.614, 59.871)
-1336.660

MW
e

η1 η2 η3 δ21 δ22 δ23

0.305
(0.205, 0.494)

0.515
(0.204, 0.995)

0.384
(0.165, 0.757)

0.020
(0.016, 0.028)

0.031
(0.023, 0.220)

0.027
(0.018, 0.673)

σ2
1 σ2

2 σ2
3 σ12 σ13 σ23

0.038
(0.014, 0.069)

0.053
(0.011, 0.098)

0.050
(0.012, 0.108)

0.045
(0.004,0.050)

0.044
(0.024, 0.062)

0.051
(0.013, 0.073)

γ1 γ2 γ3 ν AIC
0.116

(0.081, 0.145)
0.066

(0.017, 0.122)
0.063

(0.002, 0.116)
- -1339.663

threshold values for three PCs are ω1 = 0.9, ω2 = 0.5, and ω3 = 0.4. Figure 12 illustrates
reliability estimates of system lifetime distribution under models Me and MW

e , along with
the 90% CI for the reliability of the Me model. The fitting performance of the proposed
model closely aligns with the results of the multivariate Wiener process, highlighting the
model’s adaptability and flexibility. It adjusts tail heaviness through the degree of freedom
parameter, enabling its suitability for data without prominent heavy-tail features.

6. Conclusion

In this study, we introduce a novel class of tail-weighted multivariate degradation mod-
els. Our model proficiently accounts for both within-unit variability and dependencies among
PCs while allowing flexible tuning of the tail heaviness through the parameter of the degree
of freedom. Based on the model, we derive the system reliability and provide an efficient MC
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Figure 11: Correlation coefficient estimation for the FCS data under Me model.
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method for reliability assessment. Considering the complexities of the likelihood function
and the non-linear time scale transformation, we design an innovative two-stage parame-
ter estimation method, which seamlessly combines NLS and EM methods. Furthermore,
a bootstrap method is utilized to construct interval estimates for these parameters. Com-
prehensive simulation studies are conducted to validate the effectiveness of our inference
method. The findings indicate that: i) Larger sample sizes improve the accuracy of point
estimates; ii) The bootstrap method for interval estimation offers reasonable CPs; iii) Ig-
noring heavy-tail characteristics in the model results in significant biases when estimating
the MTTF. Finally, we demonstrate the applicability of our proposed methodology through
two case studies. Compared to other existing models, the proposed model is versatile to
accommodate multi-dimensional degradation data, both with and without heavy-tail char-
acteristics, by adjusting the degree of freedom parameters. This not only highlights the
model’s adaptability but also indicates its potential for diverse applications.

In the future, we can further enhance the model’s predictive accuracy and generalizabil-
ity by incorporating more complex dependencies and external dynamic environmental factors
(Hajiha et al., 2021). For instance, integrating variables such as operational conditions, en-
vironmental stressors, and usage patterns can provide a more comprehensive understanding
of degradation processes. Moreover, applying our model to maintenance scheduling and
reliability management is a promising direction (Zhao et al., 2022). By accurately predict-
ing degradation trajectories, our model can help optimize maintenance schedules, thereby
reducing downtime and maintenance costs. This may involve developing decision-support
systems that leverage our model’s predictions to recommend proactive maintenance actions.
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Appendix

Appendix A. Proof of Theorem 1

According to (8) and Bayes’ theorem, the joint conditional distribution of Θi and τi

f(Θi, τi|∆Yi) ∝ f(∆Yi|Θi, τi)× f(Θi|τi)× fG(τi)

∝
mi∏
k=1

τ
p/2
i exp

{
−(∆Yi,k −∆Σ(ti,k)Θi)

′ (Ωδ∆Σ(ti,k)/τi)
−1 (∆Yi,k −∆Σ(ti,k)Θi)

2

}

× τ
p/2
i exp

{
−(Θi − η)⊤ (Σ0/τi)

−1 (Θi − η)

2

}
× τ

µ/2−1
i exp(−τiν/2)

∝
mi∏
k=1

exp
{
−
(
Θi −∆Σ−1(ti,k

)
∆Yi,k)

′(Ωδ∆Σ−1(ti,k)/τi)
−1(Θi −∆Σ−1(ti,k)∆Yi,k)

2

}

× τ
(mi+1)p/2+ν/2−1
i exp

{
−(Θi − η)⊤ (Σ0/τi)

−1 (Θi − η)

2

}

∝ τ
p/2
i exp

{
−(Θi − µi)

′ (ΣΘi
/τi)

−1(Θi − µi)

2

}
τ
mip/2+ν/2−1
i exp

{
−τi (Ki,1 −Ki,2 + ν)

2

}
,

where
ΣΘi

=
[
Σ−1

0 +Ω−1
δ Σ(timi

)
]−1

, µi = ΣΘi
(Σ−1

0 η +Ω−1
δ Yi,mi

),

Ki,1 =

mi∑
k=1

∆Y ′
i,kΩ

−1
δ ∆Σ−1(ti,k)∆Yi,k + η⊤Σ−1

0 η, Ki,2 = µ′
iΣ

−1
Θi
µi.

Then we know that given ∆Yi and τi, the conditional distribution of Θi is proportional to

τ
p/2
i exp

{
−(Θi − µi)

′ (ΣΘi
/τi)

−1(Θi − µi)

2

}
.

Thus, we have that Θi|∆Yi, τi ∼ Np (µi,ΣΘi
/τi). Given ∆Yi, the distribution of τi

f(τi|∆Yi) =

∫
f(Θi, τi|∆Yi)dΘi ∝ τ

mip/2+ν/2−1
i exp

{
−τi (Ki,1 −Ki,2 + ν)

2

}
,

which is the gamma distribution G
(

mip+ν
2

, 2
Ki,1−Ki,2+ν

)
.

Appendix B. Proof of Theorem 2

Firstly, we list the following lemma that will be used in the proof. The details of the
lemma can be found on page 107 of Rencher and Schaalje (2008).
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Lemma 1. If x is a random vector with a mean vector of β and a covariance matrix of B,
and if A is a symmetric matrix composed of constants, then Ex(x

′Ax) = tr(AB) + β′Aβ.

From Lemma 1, we can obtain the following result.

Lemma 2. Under the conditions of Lemma 1, for any constant vector β0,

Ex [(x− β0)
′A(x− β0)] = tr(AB) + (β − β0)

′A(β − β0).

Proof: Firstly, we can expand (x− β0)
′A(x− β0) as follows:

(x− β0)
′A(x− β0) = (x− β)′A(x− β)− 2(x− β)′A(β − β0) + (β − β0)

′A(β − β0).

According to Lemma 1, we have

Ex [(x− β)′A(x− β)] = tr(AB),

because Ex[x− β] = 0 and Covx[x− β] = B. Thus, the result holds.
Now we proceed to prove Theorem 2. Recalling that ℓi,0 = (Θi − η)′Σ−1

0 (Θi − η) and
Θi|∆Yi, τi,Ψ

(s) ∼ Np

(
µ

(s)
i ,Σ

(s)
Θi
/τi

)
. According to Lemma 2, it is straightforward to obtain

E
(
ℓi,0|∆Yi, τi,Ψ

(s)
)
= tr

(
Σ−1

0 Σ
(s)
Θi
/τi

)
+
(
µ

(s)
i − η

)′
Σ−1

0

(
µ

(s)
i − η

)
.

Then, we can obtain

E
(
τiℓi,0|∆Yi,Ψ

(s)
)
= Eτi

[
E(τiℓi,0|∆Yi, τi,Ψ

(s))
]
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[
τiE
(
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Notice that

ℓi,k = (∆Yi,k −∆Σ(ti,k)Θi)
′(Ωδ∆Σ(ti,k)

)−1
(∆Yi,k −∆Σ(ti,k)Θi)

=
(
Θi −∆Σ−1(ti,k

)
∆Yi,k)

′(Ωδ∆Σ−1(ti,k))
−1(Θi −∆Σ−1(ti,k)∆Yi,k).

Similarly, we can obtain that

E
(
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(s)
)
= tr
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δ Σ

(s)
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Appendix C. Proof of Theorem 3

Taking the partial derivative of Q
(
Ψ | Ψ(s)

)
with respect to η and setting it to zero

∂Q
(
Ψ | Ψ(s)

)
∂η

=
n∑

i=1

E
(
τi|∆Yi,Ψ

(s)
)
Σ−1

0

(
µ

(s)
i − η

)
= 0.

Solving the above equation can get the solution η(s+1):

η(s+1) =

∑n
i=1 µ

(s)
i E

(
τi|∆Y i,Ψ

(s)
)

∑n
i=1 E

(
τi|∆Y i,Ψ

(s)
) .

Taking the partial derivative of Q
(
Ψ | Ψ(s)

)
with respect to η and setting it to zero

∂Q
(
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)
∂Σ0
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2
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0
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(s)
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)(
µ

(s)
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)′
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0

]
= 0.

Solving the above equation and substituting the optimal solution η(s+1) into the result, we
have

Σ
(s+1)
0 =

∑n
i=1

[
Σ

(s)
Θi

+ E(τi|∆Yi,Ψ
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]
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.

Similarly, we take the partial derivative of Q
(
Ψ | Ψ(s)

)
with respect to Ωδ and set it to

zero.
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Then we can get

Ω
(s+1)
δ =

1∑n
i=1mi

n∑
i=1

mi∑
k=1

[
∆Σ(ti,k)Σ

(s)
Θi

+ E(τi|∆Yi,Ψ
(s))

× (µ
(s)
i −∆Σ−1(ti,k)∆Yi,k)(µ

(s)
i −∆Σ−1(ti,k)∆Yi,k)

′
]
.

31



References

Bae, S.J., Kvam, P.H., 2004. A nonlinear random-coefficients model for degradation testing. Technometrics
46, 460–469. doi:10.1198/004017004000000464.

Chen, P., Ye, Z.S., 2018. Uncertainty quantification for monotone stochastic degradation models. Journal
of Quality Technology 50, 207–219. doi:10.1080/00224065.2018.1436839.

Chen, P., Ye, Z.S., Xiao, X., 2019. Pairwise model discrimination with applications in lifetime distributions
and degradation processes. Naval Research Logistics 66, 675–686. doi:10.1002/nav.21875.

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society: Series B 39, 1–22. doi:10.1111/j.2517-6161.1977.
tb01600.x.

Di Nardo, E., Nobile, A.G., Pirozzi, E., Ricciardi, L., 2001. A computational approach to first-passage-time
problems for Gauss–Markov processes. Advances in Applied Probability 33, 453–482. doi:10.1239/aap/
999188324.

Fan, J., Yung, K.C., Pecht, M., 2012. Lifetime estimation of high-power white LED using degradation-data-
driven method. IEEE Transactions on Device and Materials Reliability 12, 470–477. doi:10.1109/TDMR.
2012.2190415.

Fang, G., Pan, R., 2023. A class of hierarchical multivariate Wiener processes for modeling dependent
degradation data. Technometrics 66, 141–156. doi:10.1080/00401706.2023.2242413.

Fang, G., Pan, R., Wang, Y., 2022. Inverse Gaussian processes with correlated random effects for multivariate
degradation modeling. European Journal of Operational Research 300, 1177–1193. doi:10.1016/j.ejor.
2021.10.049.

Hajiha, M., Liu, X., Hong, Y., 2021. Degradation under dynamic operating conditions: Modeling, competing
processes and applications. Journal of Quality Technology 53, 347–368. doi:10.1080/00224065.2020.
175739.

Hong, Y., Zhang, M., Meeker, W.Q., 2018. Big data and reliability applications: The complexity dimension.
Journal of Quality Technology 50, 135–149. doi:10.1080/00224065.2018.1438007.

Jiang, D., Chen, T., Xie, J., Cui, W., Song, B., 2023. A mechanical system reliability degradation anal-
ysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism.
Reliability Engineering & System Safety 230, 108922. doi:10.1016/j.ress.2022.108922.

Kang, R., Gong, W., Chen, Y., 2020. Model-driven degradation modeling approaches: Investigation and
review. Chinese Journal of Aeronautics 33, 1137–1153. doi:10.1016/j.cja.2019.12.006.

Kou, B., Chen, W., Jin, Y., 2021. A novel cage-secondary permanent magnet linear eddy current brake with
wide speed range and its analytical model. IEEE Transactions on Industrial Electronics 69, 7130–7139.
doi:10.1109/TIE.2021.3097603.

Liu, B., Pandey, M.D., Wang, X., Zhao, X., 2021. A finite-horizon condition-based maintenance policy for a
two-unit system with dependent degradation processes. European Journal of Operational Research 295,
705–717. doi:10.1016/j.ejor.2021.03.010.

Lu, C.J., Meeker, W.O., 1993. Using degradation measures to estimate a time-to-failure distribution. Tech-
nometrics 35, 161–174. doi:10.1080/00401706.1993.10485038.

32

http://dx.doi.org/10.1198/004017004000000464
http://dx.doi.org/10.1080/00224065.2018.1436839
http://dx.doi.org/10.1002/nav.21875
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/10.1239/aap/999188324
http://dx.doi.org/10.1239/aap/999188324
http://dx.doi.org/10.1109/TDMR.2012.2190415
http://dx.doi.org/10.1109/TDMR.2012.2190415
http://dx.doi.org/10.1080/00401706.2023.2242413
http://dx.doi.org/10.1016/j.ejor.2021.10.049
http://dx.doi.org/10.1016/j.ejor.2021.10.049
http://dx.doi.org/10.1080/00224065.2020.175739
http://dx.doi.org/10.1080/00224065.2020.175739
http://dx.doi.org/10.1080/00224065.2018.1438007
http://dx.doi.org/10.1016/j.ress.2022.108922
http://dx.doi.org/10.1016/j.cja.2019.12.006
http://dx.doi.org/10.1109/TIE.2021.3097603
http://dx.doi.org/10.1016/j.ejor.2021.03.010
http://dx.doi.org/10.1080/00401706.1993.10485038


Lu, L., Wang, B., Hong, Y., Ye, Z., 2020. General path models for degradation data with multiple charac-
teristics and covariates. Technometrics 63, 354–369. doi:10.1080/00401706.2020.1796814.

Luo, C., Tan, C.H., Liu, X., 2020. Maximum excess dominance: Identifying impractical solutions in linear
problems with interval coefficients. European Journal of Operational Research 282, 660–676. doi:10.
1016/j.ejor.2019.09.030.

Luo, F., Hu, L., Wang, Y., Yu, X., 2024. Statistical inference of reliability for a K-out-of-N: G system with
switching failure under Poisson shocks. Statistical Theory and Related Fields doi:10.1080/24754269.
2024.2341982.

Meeker, W.Q., Escobar, L.A., Pascual, F.G., 2022. Statistical Methods for Reliability Data. John Wiley &
Sons.

Peng, C.Y., Cheng, Y.S., 2020. Student-t processes for degradation analysis. Technometrics 62, 223–235.
doi:10.1080/00401706.2019.1630008.

Peng, W., Li, Y.F., Yang, Y.J., Huang, H.Z., Zuo, M.J., 2014. Inverse Gaussian process models for
degradation analysis: A Bayesian perspective. Reliability Engineering & System Safety 130, 175–189.
doi:10.1016/j.ress.2014.06.005.

Peng, W., Ye, Z.S., Chen, N., 2019. Joint online RUL prediction for multivariate deteriorating systems.
IEEE Transactions on Industrial Informatics 15, 2870–2878. doi:10.1109/TII.2018.2869429.

Rencher, A., Schaalje, G., 2008. Linear Models in Statistics. John Wiley & Sons.
Si, X.S., Wang, W., Hu, C.H., Zhou, D.H., 2011. Remaining useful life estimation—A review on the

statistical data driven approaches. European Journal of Operational Research 213, 1–14. doi:10.1016/
j.ejor.2010.11.018.

Sun, F., Li, H., Cheng, Y., Liao, H., 2021. Reliability analysis for a system experiencing dependent degra-
dation processes and random shocks based on a nonlinear Wiener process model. Reliability Engineering
& System Safety 215, 107906. doi:10.1016/j.ress.2021.107906.

Wan, R., Bai, Y., 2024. Communication-efficient distributed statistical inference on zero-inflated poisson
models. Statistical Theory and Related Fields 8, 81–106. doi:10.1080/24754269.2023.2263721.

Wang, X., Balakrishnan, N., Guo, B., 2015. Residual life estimation based on nonlinear-multivariate Wiener
processes. Journal of Statistical Computation and Simulation 85, 1742–1764. doi:10.1080/00949655.
2014.898765.

Wu, C.J., 1983. On the convergence properties of the EM algorithm. The Annals of Statistics 11, 95–103.
Xu, A., Shen, L., Wang, B., Tang, Y., 2018. On modeling bivariate Wiener degradation process. IEEE

Transactions on Reliability 67, 897–906. doi:10.1109/TR.2018.2791616.
Yao, F., Hu, J., Li, B., Liu, H., Gong, F., 2024. Non‐periodic inspection and replacement policy of system

subject to non‐homogeneous gamma degradation process. Quality and Reliability Engineering Interna-
tional 40, 1165–1181. doi:10.1002/qre.3473.

Ye, Z., Xie, M., 2014. Stochastic modelling and analysis of degradation for highly reliable products. Applied
Stochastic Models in Business and Industry 31, 16–32. doi:10.1002/asmb.2063.

Zhai, Q., Xu, A., Yang, J., Zhou, Y., 2024. Statistical modeling and reliability analysis for degradation
processes indexed by two scales,. IEEE Transactions on Industrial Informatics 20, 3675–3684. doi:10.
1109/TII.2023.3313668.

33

http://dx.doi.org/10.1080/00401706.2020.1796814
http://dx.doi.org/10.1016/j.ejor.2019.09.030
http://dx.doi.org/10.1016/j.ejor.2019.09.030
http://dx.doi.org/10.1080/24754269.2024.2341982
http://dx.doi.org/10.1080/24754269.2024.2341982
http://dx.doi.org/10.1080/00401706.2019.1630008
http://dx.doi.org/10.1016/j.ress.2014.06.005
http://dx.doi.org/10.1109/TII.2018.2869429
http://dx.doi.org/10.1016/j.ejor.2010.11.018
http://dx.doi.org/10.1016/j.ejor.2010.11.018
http://dx.doi.org/10.1016/j.ress.2021.107906
http://dx.doi.org/10.1080/24754269.2023.2263721
http://dx.doi.org/10.1080/00949655.2014.898765
http://dx.doi.org/10.1080/00949655.2014.898765
http://dx.doi.org/10.1109/TR.2018.2791616
http://dx.doi.org/10.1002/qre.3473
http://dx.doi.org/10.1002/asmb.2063
http://dx.doi.org/10.1109/TII.2023.3313668
http://dx.doi.org/10.1109/TII.2023.3313668


Zhai, Q., Ye, Z.S., 2018. Degradation in common dynamic environments. Technometrics 60, 461–471.
doi:10.1080/00401706.2017.1375994.

Zhai, Q., Ye, Z.S., 2023. A multivariate stochastic degradation model for dependent performance charac-
teristics. Technometrics 65, 315–327. doi:10.1080/00401706.2022.2157881.

Zhang, S., Zhai, Q., Li, Y., 2023. Degradation modeling and RUL prediction with Wiener process considering
measurable and unobservable external impacts. Reliability Engineering & System Safety 231, 109021.
doi:10.1016/j.ress.2022.109021.

Zhao, H., Chen, Z., Shu, X., Shen, J., Lei, Z., Zhang, Y., 2023. State of health estimation for lithium-ion
batteries based on hybrid attention and deep learning. Reliability Engineering & System Safety 232,
109066. doi:10.1016/j.ress.2022.109066.

Zhao, X., Chen, P., Gaudoin, O., Doyen, L., 2021. Accelerated degradation tests with inspection effects.
European Journal of Operational Research 292, 1099–1114. doi:10.1016/j.ejor.2020.11.041.

Zhao, X., Liang, Z., Parlikad, A.K., Xie, M., 2022. Performance-oriented risk evaluation and maintenance
for multi-asset systems: A Bayesian perspective. IISE Transactions 54, 251–270. doi:10.1080/24725854.
2020.1869871.

Zheng, B., Chen, C., Lin, Y., Ye, X., Zhai, G., 2023. Reliability analysis based on a bivariate degradation
model considering random initial state and its correlation with degradation rate. IEEE Transactions on
Reliability 72, 37–48. doi:10.1109/TR.2022.3172416.

Zhuang, L., Xu, A., Wang, Y., Tang, Y., 2024. Remaining useful life prediction for two-phase degradation
model based on reparameterized inverse Gaussian process. European Journal of Operational Research
doi:10.1016/j.ejor.2024.06.032.

34

http://dx.doi.org/10.1080/00401706.2017.1375994
http://dx.doi.org/10.1080/00401706.2022.2157881
http://dx.doi.org/10.1016/j.ress.2022.109021
http://dx.doi.org/10.1016/j.ress.2022.109066
http://dx.doi.org/10.1016/j.ejor.2020.11.041
http://dx.doi.org/10.1080/24725854.2020.1869871
http://dx.doi.org/10.1080/24725854.2020.1869871
http://dx.doi.org/10.1109/TR.2022.3172416
http://dx.doi.org/10.1016/j.ejor.2024.06.032

	Introduction
	Background
	Motivation
	Related literature
	Overview

	Tail-weighted multivariate degradation model
	A new multivariate degradation model
	Reliability analysis

	Statistical inference
	Nonlinear least squares estimation
	EM algorithm
	Interval estimation

	Simulation studies
	Performance evaluation of model parameters
	Performance evaluation of correlation coefficients
	Effect of model misspecification

	Case studies
	PMB degradation data
	Fatigue crack-size data

	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

