
Remaining useful life prediction for two-phase degradation model
based on reparameterized inverse Gaussian process

Liangliang Zhuanga, Ancha Xua,b,∗, Yijun Wanga, Yincai Tangc

aSchool of Statistics and Mathematics, Zhejiang Gongshang University, Zhejiang 310018, China
bCollaborative Innovation Center of Statistical Data Engineering, Technology & Application

Zhejiang Gongshang University, Zhejiang, China
cThe KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai 200241, China

Abstract

Two-phase degradation is a prevalent degradation mechanism observed in modern sys-
tems, typically characterized by a change in the degradation rate or trend of a system’s
performance at a specific time point. Ignoring this change in degradation models can lead
to considerable biases in predicting the remaining useful life (RUL) of the system, and po-
tentially leading to inappropriate condition-based maintenance decisions. To address this
issue, we propose a novel two-phase degradation model based on a reparameterized inverse
Gaussian process. The model considers variations in both change points and model parame-
ters among different systems to account for subject-to-subject heterogeneity. The unknown
parameters are estimated using both maximum likelihood and Bayesian approaches. Ad-
ditionally, we propose an adaptive replacement policy based on the distribution of RUL.
By sequentially obtaining new degradation data, we dynamically update the estimation of
model parameters and of the RUL distribution, allowing for adaptive replacement policies.
A simulation study is conducted to assess the performance of our methodologies. Finally,
a Lithium-ion battery example is provided to validate the proposed model and adaptive
replacement policy. Technical details and additional results of case study are available as
online supplementary materials.
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1. Introduction

With the advancement of sensor technologies, prognostics and health management
(PHM) has emerged as a critical topic in modern reliability engineering. Its primary objec-
tive is to enhance the safety and performance of systems. The increasing interest in PHM
is evident in its application across various domains such as nuclear plants, electronics, and
fleet industrial maintenance (Ye and Xie, 2015). The systematic approach of PHM involves
monitoring the health status of systems, predicting the progression of failures, and minimiz-
ing operational risks through timely repair or replacement. Effective prognostics, which can
provide early warnings of impending system failures, are crucial for implementing preventive
actions, and thus can extend the lifespan of the system (Kordestani et al., 2023).

Degradation models play a pivotal role in PHM by furnishing invaluable insights into
the progressive decline of a system’s performance characteristic (PC) over time. These
models encapsulate degradation paths that mirror the deterioration trajectory of PC, of-
ten established on the foundation of either physical principles or empirical understanding
of the degradation process. Notably, linear, exponential, or power law degradation paths
frequently serve as effective tools to characterize these degradation processes (Fang et al.,
2022). However, these degradation paths assume a constant degradation mechanism for
system performance, thereby overlooking the patterns of two-phase degradation. For ex-
ample, the capacity of Lithium-ion batteries, as noted in Pop et al. (2005), often follow a
two-phase degradation pattern throughout their lifespans: initially, the capacities degrade
gradually, but after a certain number of charging cycles, degradation accelerates signifi-
cantly. A similar degradation pattern emerges in ball bearing wear (Wen et al., 2018), and
organic light-emitting diode luminosity (Wang et al., 2018a). As highlighted in Xiao et al.
(2021), relying on single-pattern-based degradation models may inadequately fit the two-
phase degradation data, resulting in imprecise predictions of remaining useful life (RUL)
and potentially leading to improper maintenance decisions.

Introducing change points becomes essential to mark the transitions between these two-
phase degradation patterns (Bae et al., 2016). To enhance the accuracy of estimating the
lifetime distribution for systems with two-phase degradation paths, the general path and
stochastic process-based two-phase degradation models have been proposed by researchers.
In the general path models, Bae and Kvam (2004) introduced a random-coefficients model to
elucidate the non-monotonic behavior of light display degradation across both burn-in and
stable phases. Additionally, Chen and Tsui (2013) introduced a two-phase model to monitor
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the degradation of rotational bearings and estimate RUL. They used a Bayesian framework,
seamlessly combining historical and in-situ observations, to provide accurate predictions. In
the realm of stochastic process modeling, a significant amount of research has concentrated
on leveraging the Wiener process to encapsulate two-phase degradation processes (Gao et al.,
2020; Ma et al., 2023). For example, Wang et al. (2018a) proposed a Wiener process model
with measurement errors and change points, designed to fit degradation paths displaying a
two-phase pattern using Bayesian method. Yan et al. (2021) proposed a two-phase physics-
based Wiener process model, taking into account fatigue crack mechanisms and other factors.
More recently, Wang et al. (2023a) proposed a prognosis-driven multi-threshold inspection
and replacement model for two-phase Wiener degradation. The Wiener process is capable of
representing non-monotonic degradation paths, making it useful for specific datasets. How-
ever, when dealing with monotonic degradation data, such as wear in power-shift steering
transmission (Song and Cui, 2022), and operating current of Gallium arsenide laser (Zhou
et al., 2024), the gamma and inverse Gaussian (IG) processes emerge as more suitable op-
tions. These processes empower researchers to effectively analyze degradation patterns and
accurately estimate RULs for systems displaying monotonic degradation behavior.

To the best of our knowledge, only a limited number of studies have delved into the
utilization of the two-phase gamma process model. For instance, Ling et al. (2019) proposed
a two-phase degradation model under the gamma process, and employed both Bayesian and
maximum likelihood (ML) methods to estimate unknown model parameters. Similarly, Lin
et al. (2021) presented a fixed change-point two-phase gamma process model to analyze
the voltage-discharge curves of battery aging under constant current. On the other hand,
only Duan and Wang (2017) studied the two-phase IG degradation and employed the ML
approach for estimating unknown parameters. While this paper pioneers the modeling of
the two-phase IG degradation process, it remains subject to several limitations:

1. Constraints on locations of change points: In a two-phase degradation model
with a change point (τ), illustrated in Figure 1(a), Y (t) adheres to an IG process
IG(µ1t, ηt

2) prior to time τ , and transitions to another IG process IG(µ2t, ηt
2) after

τ . Assume that tj < τ < tj+1, and denote that Yj, Yτ and Yj+1 are the degradation
values at the time tj, τ and tj+1, respectively. The degradation increment Yj+1 − Yj

can be decomposed into two distinct sub-increments: Yj+1 − Yτ and Yτ − Yj. It is
established that Yj+1 − Yτ ∼ IG(a, b) and Yτ − Yj ∼ IG(c, d), where a = µ2(tj+1 − τ),
b = η(tj+1 − τ)2, c = µ1(τ − tj), and d = η(τ − tj)

2. The probability density function
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(PDF) of IG(a, b) is

fIG(x|a, b) =
√

b

2πx3
exp

{
−b(x− a)2

2a2x

}
. (1)

Nevertheless, deriving the distribution of Yj+1 − Yj is challenging due to the non-
additive nature of the defined IG distribution (1), even when µ1 = µ2. To circumvent
this issue, Duan and Wang (2017) presumed that the change point coincides with the
inspection time point, i.e., τ = tj or τ = tj+1, simplifying the problem. However,
in practical scenarios where change points are often random, rendering the assump-
tion that τ aligns with inspection points is liable to introduce biases in parameter
estimation, inaccuracies in RUL prediction, and suboptimal maintenance decisions.

2. Insufficient considerations for deriving the lifetime distribution. Duan and
Wang (2017) treated the degradation state at the change point as a fixed value, sub-
sequently deriving the distribution of failure time. Nonetheless, the estimation of the
change point inherently involves information from the sample, and the uncertainty
stemming from this estimation can propagate to the degradation state. Consequently,
it becomes imperative to account for the uncertainty of the degradation state at the
change point and to deduce the marginal distribution of failure time. Furthermore,
their work omits consideration of important aspects such as RUL prediction and sub-
sequent maintenance decisions.

3. Neglecting the uncertainty in estimation: Duan and Wang (2017) primarily
employed the ML approach for point estimation in their two-phase model, without ex-
plicitly addressing the uncertainty inherent in the estimated parameters. Recognizing
and addressing parameter uncertainty is a fundamental aspect of statistical inference,
as it offers insights into the variability of the estimates. Particularly in scenarios
characterized by limited sample sizes, estimators’ variances tend to be substantial. In-
corporating uncertainty quantification, such as interval estimation, becomes especially
valuable in shedding light on key quantities of interest, such as mean-time-to-failure
(MTTF), reliability, quantile lifetime, etc. Such uncertainty quantification proves
invaluable for informed maintenance decisions (Wu et al., 2023; Xu et al., 2024).

To address the aforementioned limitations, we have undertaken substantial extensions.
The main contributions and innovations of this paper are as follows:

4



(a) IG process (b) Reparameterized IG process

Figure 1: Two types of two-phase stochastic processes.

1. A novel two-phase reparameterized IG (rIG) degradation model is developed to ad-
dress the non-additivity challenge inherent in the traditional two-phase IG degradation
model. Illustrated in Figure 1(b), when the change point falls within the time interval
(tj, tj+1), we derive the distribution of the degradation increment Yj+1 − Yj based on
the distributions of the two distinct sub-increments Yj+1 − Yτ and Yτ − Yj. Specifi-
cally, if Yj+1−Yτ ∼ rIG(a, b) and Yτ −Yj ∼ rIG(c, b), then Yj+1−Yj ∼ rIG(a+ c, b).
Details on the definition and properties of the rIG distribution will be presented in
Section 2. In this innovative two-phase model, the change point is not confined to
inspection time points; it can occur at any time. This expanded flexibility ensures
that the new two-phase degradation model accommodates change points at arbitrary
moments, providing a more accurate representation of complex degradation patterns.

2. We introduce distinct change points and model parameters for each individual system
to address the inherent heterogeneity among devices. By acknowledging the uncer-
tainty surrounding the degradation state at the change point, we derive the distribution
of failure time and RUL for each system. We offer engineers two statistical inference
methods to accurately identify change points and quantify parameter uncertainties: i)
ML-based parameter estimation with interval estimates obtained through the paramet-
ric bootstrap method. ii) Bayesian approach utilizing adaptive rejection Metropolis
sampling (ARMS)-Gibbs sampling to generate posterior samples and establish credible
intervals. These intervals serve to convey the uncertainty associated with parameter
estimates and RUL predictions, offering a comprehensive representation of the overall
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uncertainty.

3. An adaptive replacement policy based on the distribution of RUL is proposed. While
research on two/multi-phase degradation maintenance policies has garnered consider-
able attention, often optimizing decision variables based on fixed change points and
minimizing cost rates (Zhang et al., 2024b; Yang et al., 2017), there is limited focus on
unknown parameters and change point detection. Some studies, such as Fouladirad
and Grall (2011); Fouladirad et al. (2008); Grall and Fouladirad (2008), address de-
layed change point detection with known model parameters. In contrast, our approach
assumes unknown parameters (including change points) and dynamically updates them
based on continuously acquired data. This adaptive policy aligns better with practi-
cal applications, enhancing the effectiveness of maintenance decisions amidst evolving
system dynamics.

The rest of this paper is organized as follows. Section 2 introduces a two-phase rIG
degradation model and derives the corresponding distributions of failure time and RUL.
Section 3 presents the ML and Bayesian methods for estimating unknown model parameters
and change points. A RUL-based adaptive replacement policy is proposed in Section 4.
Section 5 conducts simulation studies to compare the inferential performance of ML and
Bayesian methods. Section 6 carries out a case study to validate the proposed methodology.
Finally, we summarize our findings in Section 7.

2. Two-phase reparameterized IG degradation model

In this section, we define the rIG process, apply it to the two-phase degradation model,
and subsequently present the system failure time and RUL distribution.

2.1. The rIG process

Considerable research has been dedicated to modeling constant degradation mechanisms
using the conventional IG process (Fan et al., 2024; Hao et al., 2019; Pan et al., 2016).
However, the inapplicability of the additivity property of the conventional IG process poses
a challenge when dealing with a two-phase degradation problem directly. To overcome this
challenge, we first introduce the rIG distribution rIG(δ, γ), which forms the basis for our
proposed rIG process. The parameter relationship between rIG(δ, γ) and the traditional
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IG distribution IG(a, b) is a = δ/γ and b = δ2 (Barndorff-Nielsen and Koudou, 1998). The
PDF of rIG(δ, γ) is

frIG(y|δ, γ) =
δ√
2π
eδγy−3/2e−(δ

2y−1+γ2y)/2, y > 0, δ > 0, γ > 0, (2)

and the cumulative distribution function (CDF) is

FrIG(y|δ, γ) = Φ

[
√
yγ − δ

√
y

]
+ e2δγΦ

[
−√

yγ − δ
√
y

]
, (3)

where Φ(·) is the CDF of the standard normal distribution. If a random variable Y follows
the rIG distribution rIG(δ, γ), then the moment generating function (MGF) of Y is

MY (t) = E(ety) = e
δγ

(
1−

√
1− 2t

γ2

)
. (4)

According to (4), we know that the rIG distribution has additive property. That is, if
Y1 ∼ rIG (δ1, γ) and Y2 ∼ rIG (δ2, γ), then Y1 +Y2 ∼ rIG (δ1 + δ2, γ) . The proof of (4) and
the additive property can be found in Supplementary Section S1.

Based on rIG distribution, we provide the definition of the rIG process. A stochastic
process {Z(t), t ≥ 0} is called rIG process if it satisfies: i) Z(0) = 0 with probability one;
ii) Z(t) has independent increments. Specifically, Z (t2) − Z (t1) and Z (s2) − Z (s1) are
independent for all t2 > t1 ≥ s2 > s1 ≥ 0; iii) For all t > s ≥ 0, Z(t) − Z(s) follows the
rIG distribution rIG (δ(Λ(t)− Λ(s)), γ), where Λ(t) is a monotone increasing function with
Λ(0) = 0, δ and γ are unknown parameters. We denote the rIG process {Z(t), t ≥ 0} as
rIG (δΛ(t), γ), where δ is the drift parameter and γ is the dispersion parameter. Then from
(4), we can derive the mean and variance of {Z(t), t ≥ 0}, which are δΛ(t)/γ and δΛ(t)/γ3,
respectively.

2.2. Two-phase rIG degradation model

Suppose the degradation of a system’s PC unfolds across two distinct phases, marked
by a single change point. The degeneration patterns in these two phases are assumed to
conform to the rIG process, each characterized by a distinct drift to capture the differing
degradation behavior before and after the change point. Moreover, the dispersion param-
eter γ is assumed to remain uniform across different systems, as it reflects the underlying
failure mechanism of the system. Given that the sampled systems are drawn from the same
population, it’s commonly assumed that the failure mechanisms across various systems are
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consistent. This assumption aligns with established practices in reliability analysis (Meeker
et al., 2022; Zhai et al., 2024). We adopt a rIG-process-based degradation model that em-
ploys a linear function (i.e., Λ(t) = t). This choice aligns with the general practice of
employing linear degradation models to characterize processes where the degradation rate
increases linearly over time (Kong et al., 2017; Wang et al., 2018a). Furthermore, it is im-
portant to recognize that diverse systems might exhibit individualized change points. To
account for this variability, we consider the change point, denoted as τ , as a random variable
following a Gaussian distribution with a PDF of gτ (·|µτ , σ

2
τ ). This approach accommodates

the inherent unit-to-unit variability. The adoption of a normal distribution assumption not
only facilitates mathematical derivations but also offers analytical solutions for estimating
µτ and σ2

τ , making it a prevalent choice in the realm of degradation modeling (Lu et al.,
2021; Shen et al., 2018). Thus, the proposed two-phase rIG degradation model is formulated
as

Y (t)|τ ∼ rIG (m(t; δ1, δ2, τ), γ) , τ ∼ N
(
µτ , σ

2
τ

)
,

m(t; δ1, δ2, τ) =

δ1t, t ≤ τ,

δ2 (t− τ) + δ1τ, t > τ,

(5)

where δ1 and δ2 are the drift parameters for t ≤ τ and t > τ , respectively.

2.3. Failure-time and RUL

Using the two-phase rIG degradation model (5), we can derive the distributions of
failure time and RUL for the systems. These derivations, as presented in the subsequent
two theorems, hold significant importance for making informed maintenance decisions and
optimizing the allocation of resources.

The failure time T is defined as the first passage time at which the degradation value
Y (t) of the system exceeds the failure threshold D, represented as T = inf {t | Y (t) ≥ D}.
The reliability function of T and the MTTF of the system can be computed as follows.

Theorem 1. The reliability function of T is

R (t) = P (Y (t) < D, τ ≥ t) + P (Y (t) < D, 0 < τ < t)

= F̄1 (t | τ) Ḡτ (t) +

∫ t

0

gτ (τ |µτ , σ
2
τ )F̄2 (t | τ) dτ,

(6)

where Ḡτ (t) is the survival function of random variable τ , F̄1(t|τ) = P (T > t | τ ≥ t), and
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F̄2(t|τ) = P (T > t | τ < t). Given the reliability function, the MTTF can be computed as

MTTF = E(T ) =

∫ ∞

0

R(t)dt. (7)

Let yt be the observed degradation value at time t. The RUL of the system at time t
is defined as St = inf {x;Y (t+ x) ≥ D | Yt < D}. We have the following results.

Theorem 2. The reliability function of RUL is

RSt(x) = F̄St,1 (x | τ) Ḡτ (x+ t) +

∫ x+t

t

gτ (τ |µτ , σ
2
τ )F̄St,2 (x | τ) dτ +

∫ t

0

gτ (τ)F̄St,3 (x | τ) dτ,

(8)
where F̄St,i, i = 1, 2, 3 denotes the conditional reliability functions of St, arising from various
relationships among times t, t+ x, and τ . The PDF of RUL function can be computed by

fSt(x) = −∂RSt(x)

∂x
. (9)

The mean of RUL at time t can be obtained by

MRL = E(St) =

∫ ∞

0

RSt(x)dx. (10)

The proofs of theorems 1 and 2 are given in Supplementary Section S2.

3. Statistical inference

In this section, considering unobserved change points, we present two methods to esti-
mate both parameters and change points. Section 3.1 introduces the ML method, utilizing
the expectation-maximization (EM) algorithm with the bootstrap method. Section 3.2 em-
ploys a Bayesian approach to quantify uncertainties in model parameters.

Assume there are a total of I systems under inspection in a degradation test. The
degradation process of the i-th system encompasses a change point denoted as τi. The
deterioration pattern of a system’s PC follows the two-phase rIG degradation model (5).
Denote Yi,j as the observed degradation value at the measurement time ti,j, i = 1 . . . , I, j =

1, . . . , ni, and 0 < ti,1 < . . . < ti,ni
. Let ∆yi,j = Yi,j − Yi,j−1, where Yi,0 = 0, and denote that

∆Yi = (∆yi,1, . . . ,∆yi,ni
)⊤, ∆Y =

(
∆Y ⊤

1 , · · · ,∆Y ⊤
I

)⊤. The distribution of ∆yi,j can be
determined based on the location of the change point τi. As shown in Figure 2, there are
three potential scenarios for the change point τi. We denote these scenarios as k = 1, 2, and
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(a) τi ≥ ti,j (b) ti,j−1 ≤ τi < ti,j (c) τi < ti,j−1

Figure 2: Three scenarios for change points and inspection time.

3, corresponding to τi ≥ ti,j, ti,j−1 ≤ τi < ti,j, and τi < ti,j−1, respectively. Consequently, the
distribution of ∆yi,j can be expressed as rIG

(
∆m

(k)
i,j (δ1,i, δ2,i, τi) , γ

)
, where

∆m
(k)
i,j (δ1,i, δ2,i, τi) =


δ1,i∆ti,j k = 1,

(δ1,i − δ2,i) τi + δ2,iti,j − δ1,iti,j−1, k = 2,

δ2,i∆ti,j, k = 3,

where ∆ti,j = ti,j − ti,j−1 and ti,0 = 0, i = 1 . . . , I, j = 1, . . . , ni. For simplicity, let
λ
(1)
i,j = I (τi ≥ ti,j) , λ

(2)
i,j = I (ti,j−1 ≤ τi < ti,j), and λ

(3)
i,j = I (τi < ti,j−1), then we have

∆mi,j (δ1,i, δ2,i, τi) =∆m
(1)
i,j (δ1,i, δ2,i, τi)

λ
(1)
i,j ×∆m

(2)
i,j (δ1,i, δ2,i, τi)

λ
(2)
i,j ×∆m

(3)
i,j (δ1,i, δ2,i, τi)

λ
(3)
i,j .

Thus, given τi, the conditional PDF of ∆yi,j can be written as

fi,j (∆yi,j | δ1,i, δ2,i, τi, γ) =
∆mi,j (δ1,i, δ2,i, τi)√

2π
exp {γ∆mi,j (δ1,i, δ2,i, τi)}∆y−3/2

i,j

× exp
{
−
[∆mi,j (δ1,i, δ2,i, τi)]

2 ∆y−1
i,j + γ2∆yi,j

2

}
.

(11)

Let δ1 = (δ1,1, . . . , δ1,I)
⊤, δ2 = (δ2,1, . . . , δ2,I)

⊤ and τ = (τ1, . . . , τI)
⊤. Further, we denote

η =
(
δ⊤
1 , δ

⊤
2 , γ

)⊤, θτ = (µτ , σ
2
τ )

⊤ and ϑ =
(
θ⊤
τ ,η

⊤)⊤. Given the observed data ∆Y , the
likelihood function of the model parameters ϑ is

Lobs(∆Y |ϑ) =
I∏

i=1

∫ ∞

−∞

ni∏
j=1

fi,j (∆yi,j | δ1,i, δ2,i, τi, γ) gτ (τi|θτ )dτi. (12)

It is evident that obtaining a closed-form solution for the ML estimates (MLEs) of ϑ is not
feasible (Shao and Wang, 2023). To address challenges, we propose an EM algorithm, an
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iterative optimization method primarily used for dealing with scenarios involving unobserved
data, commonly applied in reliability analysis (Xiao et al., 2023; Wang et al., 2023b). This
algorithm iteratively performs expectation step (E-step) and maximization step (M-step) to
optimize model parameters.

3.1. EM algorithm with bootstrap method
We begin with the E-step, where we construct a Q-function representing the expected

value of the complete log-likelihood for (∆Y , τ ). This expectation is calculated based on
the conditional distribution of τ given parameter vector ϑ. Next, in the M-step, we update
the parameter estimates ϑ by maximizing the expected log-likelihood obtained in the E-step.
This iterative process continues until the specified convergence precision is achieved. The
complete log-likelihood for τ is expressed as:

lc(∆Y , τ |ϑ) =
I∑

i=1

li (θτ ) +
I∑

i=1

ni∑
j=1

li,j(η, τ ), (13)

where

li (θτ ) = log gτ (τi | θτ ) = − log
√
2πστ −

(τi − µτ )
2

2σ2
τ

,

li,j(η, τ ) = log fi,j (∆yi,j | η, τ )

= − log
√
2π + log∆mi,j + γ∆mi,j −

3

2
log∆yi,j −

∆m2
i,j

2∆yi,j
− γ2∆yi,j

2
,

and ∆mi,j = ∆mi,j (δ1,i, δ2,i, τi). Assuming that the optimal solution in the M-step during
the s-th iteration is denoted as ϑ(s), in the subsequent (s + 1)-th iteration, the initial step
involves computing the following Q-function within the E-step:

Q(s)(ϑ) = Eϑ(s)
[lc(∆Y , τ |ϑ)]

=
I∑

i=1

Eϑ(s)
[li (θτ ) | ∆Y ] +

I∑
i=1

ni∑
j=1

Eϑ(s)
[li,j(η, τ ) | ∆Y ] ,

(14)

which is the expectation of lc(∆Y , τ |ϑ) with respect to the conditional distribution of
τ . The detailed derivation of two terms on the right-hand side of (14), Eϑ(s)

[li (θτ ) | ∆y]

and Eϑ(s)
[li,j(η, τ ) | ∆y] can be found in supplementary material. Once the Q-function is

obtained, we update the optimal solution in the M-step as

ϑ(s+1) = arg maxQ(s)(ϑ). (15)
11



This can be accomplished through the utilization of numerical optimization algorithms,
such as Newton or quasi-Newton algorithms, known for their quick convergence, memory
efficiency, and applicability to high-dimensional nonlinear optimization (Jamshidian and
Jennrich, 1997; Li et al., 2024). Consequently, the MLE of ϑ can be computed iteratively
until convergence is reached, and change points can be obtained by Eϑ̂ {τi | ∆yi}, i =

1, . . . , I . Technical details of the EM algorithm are available in Supplementary Section S3.
In addition to the point estimate ϑ, there is often a need to establish confidence inter-

vals for a function of the parameters, denoted as h(ϑ). Constructing interval estimates is
typically done using asymptotic theories. Nevertheless, given the intricacies of evaluating
the Fisher information matrix for the proposed model, we opt for the parametric bootstrap
method (Efron, 2012; Lamu and Yan, 2024) as an alternative approach to quantify the pa-
rameter uncertainty. The bootstrap procedure is outlined in Algorithm 1. After acquiring
the bootstrap estimates

{
ϑ̂∗

1, . . . , ϑ̂
∗
B

}
, we construct an approximate 100(1 − α)% boot-

strap confidence interval for a function of the parameters h(ϑ). The interval estimation is
constructed as follows: [

h
(
ϑ̂∗

)
(αB/2)

, h
(
ϑ̂∗

)
((1−α/2)B)

]
,

where h
(
ϑ̂∗

)
(b)

denotes the b-th statistic among
{
h
(
ϑ̂∗

)
1
, . . . , h

(
ϑ̂∗

)
B

}
.

Algorithm 1: Parametric bootstrap algorithm.
Input: Point estimate ϑ̂.
Output: B bootstrap estimates

{
ϑ̂∗

1, . . . , ϑ̂
∗
B

}
.

1 for b = 1 to B do
2 Generate τ from N (µ̂τ , σ̂

2
τ );

3 for i = 1 to I do
4 for j = 1 to ni do
5 Generate degradation sample ∆Ỹi,j from

rIG
(
∆m

(k)
i,j

(
δ̂1,i, δ̂2,i, τ̂i

)
, γ̂

)
, k = 1, 2, 3.

6 end
7 end
8 Obtain ϑ̂∗

b based on ∆Ỹ using the proposed EM algorithm.
9 end
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3.2. Bayesian analysis
Bayesian analysis stands as a paramount methodology in the realm of PHM, celebrated

for its distinctive capacity to harness prior knowledge and rigorously quantify the uncertainty
of the unknown parameters (Taylor et al., 2024; Zhou et al., 2024). One of its primary
advantages is the ability to incorporate existing information, often in the form of prior
distributions, which encapsulate our prior beliefs about the parameters of interest. By
integrating this prior knowledge with observed data, Bayesian analysis offers a powerful
means to refine parameter estimates.

In this section, we utilize a Bayesian method to estimate the model parameters. The
framework is set as follows:

Yi(t|τi) ∼ rIG (m(t; δ1,i, δ2,i, τi), γ) , τi ∼ N
(
µτ , σ

2
τ

)
, i = 1, . . . , I, (16)

m(t; δ1,i, δ2,i, τi) =

δ1,it, t ≤ τi,

δ2,i (t− τi) + δ1,iτi, t > τi,
(17)

(
µτ , σ

2
τ

)
∼ NIGa (βτ , ητ , vτ , ξτ ) , γ ∼ N(ω, κ2), (18)

δ1,i ∼ N
(
µ1, σ

2
1

)
, δ2,i ∼ N

(
µ2, σ

2
2

)
, (19)(

µ1, σ
2
1

)
∼ NIGa (β1, η1, v1, ξ1) ,

(
µ2, σ

2
2

)
∼ NIGa (β2, η2, v2, ξ2) , (20)

where NIGa(·) denotes the normal-inverse gamma distribution. (16) and (17) are the model
settings, consistent with Section 3.1. In (18), we establish priors for the shared parameters
within the model. This enables us to improve the accuracy of τi estimation by incorporating
information from other samples. Next, we provide a prior for the drift parameters. Due
to potential variations in degradation paths among different systems, their drift parameters
may differ. Nevertheless, considering commonalities among these systems as they belong
to the same population, we adopt a hierarchical prior approach, transitioning from (19) to
(20). This approach accommodates common effects and inherent unit-to-unit heterogeneity
in the drift parameters, thereby capturing the rich complexity of degradation patterns across
various systems.

Remark: Within the Bayesian framework, we allocate normal priors to the parameters
γ, δ1,i, and δ2,i. While there exists a possibility that these parameters may take negative val-
ues, it is important to note that this probability becomes negligible when the ratio between
the standard deviation and mean of the prior distribution is sufficiently small (Chen and
Tsui, 2013; Wang et al., 2018b). This consideration aligns with common practice in Bayesian
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modeling, where such cases of rare extreme values are often deemed inconsequential within
a well-designed prior distribution. Furthermore, the choice of normal priors offers mathe-
matical convenience and lends itself well to the establishment of hierarchical structures for
hyperparameters. As highlighted in Bernardo and Smith (2009), the normal-inverse gamma
distribution serves as the conjugate prior for the mean and variance parameters of the nor-
mal distribution. This property significantly streamlines the inference process, contributing
to a more tractable and efficient analysis.

Let θ = (ϑ, µ1, σ
2
1, µ2, σ

2
2)

⊤ be the parameter vector in the two-phase model when we
use the Bayesian model. According to Bayes’ theorem, the joint posterior distribution of θ
can be derived as

π(θ | ∆Y ) ∝ π
(
µτ , σ

2
τ

)
π
(
µ1, σ

2
1

)
π
(
µ2, σ

2
2

)
π (γ | ω, κ) π

(
τ | µτ , σ

2
τ

)
× π

(
δ1 | µ1, σ

2
1

)
π
(
δ2 | µ1, σ

2
1

)
f∆Y (∆Y | δ1, δ2, τ , γ) .

(21)

Given the complexity of π(θ | ∆Y ), a direct derivation of Bayesian estimates appears to
be unfeasible. As an alternative, we employ the proposed sampling algorithm to gener-
ate posterior samples of the parameters (see Algorithm 2), where θ\η denote the elements
that remain within θ after removing η, thereby facilitating Bayesian inference. Their full
conditional posterior distributions are given in Supplementary Section S4. Note that the
full conditional posterior distributions of the parameters within θ, excluding τ , δ1, and δ2,
are known distributions. As a result, their sample can be directly generated by statistical
software. On the other hand, for τi, δ1,i, and δ2,i, where i = 1, . . . , I , we must resort to the
adaptive rejection Metropolis sampling (ARMS) algorithm (Gilks et al., 2022).

4. RUL-based adaptive replacement policy

In this section, we provide a detailed exposition of an adaptive replacement policy and
establish a maintenance cost model that is grounded in the one-cycle criterion (Lu et al.,
2022; Sheu et al., 2019), as discussed in Section 4.1. Section 4.2 will then focus extensively on
evaluating the effectiveness and performance of the proposed policy, while also introducing
two conventional policies for comparative analysis.

4.1. Adaptive replacement policy

Assume that the i-th system under consideration undergoes discrete inspection times
denoted as 0 = ti,0 < ti,1 < · · · < ti,j < · · · < ti,ni

. At each inspection time, yi,j represents
14



Algorithm 2: ARMS-Gibbs sampling algorithm.
Input: Observed data: (∆Y ,∆t).
Output: The posterior samples of θ.

1 Set initial values θ(0) =
(
ϑ(0), σ

2(0)
τ , µ

(0)
1 , σ

2(0)
1 , µ

(0)
2 , σ

2(0)
2

)⊤
.

2 for s = 1 to S do
3 Generate posterior samples

(
µ
(s)
τ , σ

2(s)
τ

)
,
(
µ
(s)
1 , σ

2(s)
1

)
and

(
µ
(s)
2 , σ

2(s)
2

)
of

(µτ , σ
2
τ ), (µ1, σ

2
1), (µ2, σ

2
2) from NIGa

(
β
′(s)
τ , η

′(s)
τ , v

′(s)
τ , ξ

′(s)
τ

)
,

NIGa
(
β
′(s)
1 , η

′(s)
1 , v

′(s)
1 , ξ

′(s)
1

)
and NIGa

(
β
′(s)
2 , η

′(s)
2 , v

′(s)
2 , ξ

′(s)
2

)
, respectively;

4 Generate a posterior sample γ(s) of γ from N (ω′, κ′);
5 Using ARMS algorithm to generate posterior samples δ(s)1,i , δ

(s)
2,i and τ

(s)
i of δ1,i,

δ2,i and τi from π
(
δ1,i | θ(s)

\δ1,i ,∆y
)

, π
(
δ2,i | θ(s)

\δ2,i ,∆y
)

and

π
(
τi | θ(s)

\τi ,∆y
)
, i = 1, . . . , I , respectively.

6 end
7 The first L burn-in samples are discarded, and a total of S − L posterior samples of

each parameter are obtained. Based on these S − L posterior samples, point and
interval estimates are constructed.

the observed degradation value. The collection of degradation measurements is denoted
as yi,1:j = {yi,1, yi,2, . . . , yi,j}. Leveraging the parameter estimation techniques discussed in
Section 3, we iteratively update the estimation of the model parameters and the RUL distri-
bution, denoted as fSt(x|yi,1:j), whenever new observations become available. This sequential
updating process equips operators with real-time information to make dynamic maintenance
decisions aimed at proactively preventing system failures. These dynamic maintenance de-
cisions involve evaluating candidate maintenance actions at each inspection time point and
determining optimal preparation and maintenance actions as data continues to be collected.

We assume that the failure is detected only by inspections, and the cost of each in-
spection is ci. Maintenance is executed perfectly by replacing the system with brand-new
identical spare parts. To ensure the reliability of the system, it is typically necessary to have
an adequate supply of spare parts. Maintenance preparations are usually required to be
ready before performing maintenance operations to avoid operational errors or unnecessary
delays, including but not limited to preparing tools, equipment, technicians, and shutting
down the system. This maintenance preparation time is denoted as ϖ.
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This paper examines two maintenance actions: corrective replacement and preventive
replacement. At inspection epoch ti,j, when the system is operational, the decision maker
has the option to choose between replacing the system preventively or waiting until the next
inspection. Preventive replacement is implemented when it is expected that the system is
nearing the failure state, incurring a preventive replacement cost denoted as cp; in this case,
upon the specified preparation time, the inspection is completed, followed by immediate re-
pair upon preparation completion. If the system is found to fail during the inspection, it is
then subject to corrective replacement, incurring a corrective replacement cost represented
as cc. Additionally, the downtime cost cb associated with the preparation time subsequent
to system failure must be taken into account. Therefore, at the current moment ti,j, the can-
didate replacement time Ti,j of the i-th system can be achieved by minimizing the expected
cost rate:

Ti,j = inf
Ti,j

{∫ Ti,j−ti,j

0

cc + ci⌊x+ ti,j⌋+ cb
x+ ti,j +ϖ

fSt(x|yi,1:j)dx

+

∫ +∞

Ti,j−ti,j

fSt(x|yi,1:j)
cp + ci⌊Ti,j −ϖ⌋

Ti,j
dx

}
,

(22)

where ⌊ψ⌋ = max{h ∈ Z | ti,h ≤ ψ} denotes the number of inspections before ψ. This
involves assessing the trade-off between preventive replacement to avoid potential failures
and the associated cost versus waiting until the next inspection for a more precise evaluation
of the system’s condition (Lu et al., 2022; Sheu et al., 2019). Note that Ti,j is considered a
candidate value because long-term RUL prognostics may have lower accuracy. Fortunately,
with the continuous collection of more inspection data, the proposed RUL-based adaptive
replacement policy is expected to generate more precise prognostic results over time, allowing
for the updating of the maintenance plan. As the values of Ti,j are successively updated, the
optimal preparation time should be implemented for the first time when Ti,j − ti,j equals or
becomes less than ϖ. Once the preparation is completed, the replacement can be carried
out. In other words, the optimal preparation time and the optimal replacement time are
respectively given by:

T ′
i = inf

ti,j
{Ti,j − ti,j ≤ ϖ}, and T ∗

i = T ′
i +ϖ. (23)

After the replacement, the newly installed component will resume operation, initiating a
new maintenance decision-making process.
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4.2. Performance evaluation and benchmark policies
We now shift our focus to evaluating the performance of the adaptive replacement policy.

Consider a set of I systems, each of which operates for a single cycle. Let Xi = min{T ∗
i , T f

i },
where T ∗

i represents predicted optimal maintenance time, and T f
i represents actual failure

time. At this point, the actual cost rate of the i-th system can be calculated by

CRi =


cp + ci⌊Xi −ϖ⌋

T ∗
i

, Xi = T ∗
i ,

cc + ci⌊Xi⌋+ cb
T f
i +ϖ

, Xi = T f
i .

(24)

The average cost rate for all systems is thus given by

CR =

∑I
i=1 CRi

I
. (25)

The data-driven dynamic adaptive replacement decision-making process is shown in Algo-
rithm 3. We recommend using Bayesian methods for statistical inference in Algorithm 3
when implementing this replacement policy, as we find through simulation analysis in Sec-
tion 5 that Bayesian method typically yields better performance compared to ML method.
To highlight the superiority of the RUL-based adaptive replacement model, we also con-
sider two simplified policies as benchmark maintenance policies. i). Classical replacement
policy (CRP) that is based on historical reliability data. The preventive maintenance time
is determined by the system’s MTTF T̄ F . The cost rate of the i-th system is similar to
(24), except that T ∗

i is replaced by T̄ F , and does not consider the inspection cost. ii). Ideal
replacement policy (IRP) that is based on the assumption of perfect predicted failure time
T P
i . The cost rate of the i-th system is cp/T P

i . Then, the average cost rate of all systems
for both benchmark policies is calculated using (25).

5. Simulation study

This section gives simulation studies to investigate the performance of the proposed
model and inference methods. We consider following three scenarios with different I and
ni: (I) I = 5 and ni = 20; (II) I = 5 and ni = 40; (III) I = 8 and ni = 20. The
dispersion parameter γ = 2. Considering the heterogeneity, we generate δ1,1, . . . , δ1,I from
N(4, 1), δ2,1, . . . , δ2,I from N(15, 1), and τ1, . . . , τI from N(10, 1). For the i-th system, given
the change point τi, the degradation increments are simulated from the rIG distribution
(11). For each scenario, we generate 500 samples to reduce the effects of randomness on the
results.
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Algorithm 3: RUL-based adaptive replacement policy.
Input: y, cc, cp, cb, ϖ,D, j.
Output: T ∗

i , CRi, i = 1, . . . , I , and CR.
1 for i = 1 to I do
2 while no maintenance performed do
3 if the system is operational then
4 Collect new inspection data Yi,j;
5 Update model parameter estimates using Bayesian methods in Section 3;
6 Compute RUL distribution {fSt(x|yi,1:j)}+∞

x=0 using (9);
7 Determine Ti,j by (22), and find T ′

i by (23);
8 if ti,j = T ′

i then
9 Inspection is completed, and preventive maintenance at T ∗

i .
10 end
11 end
12 else
13 Corrective maintenance;
14 Set T f

i = ti,j.
15 end
16 j = j + 1.
17 end
18 Compute CRi by (24).
19 end
20 Compute CR by (25).

5.1. Parameter estimation performance of two inference methods

First, we fit the simulated data using the proposed model and methods. For the
Bayesian method, the posterior samples of θ are generated via the ARMS-Gibbs algo-
rithm in Section 3.2. We employ flat priors, where (µτ , στ ) ∼ NIGa(8, 100, 0.01, 0.01),
(µ1, σ1) ∼ NIGa(1, 100, 0.01, 0.01), (µ2, σ2) ∼ NIGa(2, 100, 0.01, 0.01), and γ ∼ N(5, 100).
For each scenario, posterior samples are obtained after a burn-in period of L = 5000 itera-
tions, during which convergence is monitored using diagnostic tools. Following the burn-in
phase, an additional S − L = 5000 iterations are conducted to obtain posterior samples for

18



subsequent inference, and posterior estimates for all parameters are calculated as the means
of their corresponding samples. For the ML method, we determine the initial values for the
estimates in the EM algorithm based on the estimates obtained from the Bayesian method.
Point estimates are obtained using the EM algorithm from Section 3.1, while corresponding
interval estimates are calculated using the parametric bootstrap method with B = 500. The
convergence of the EM algorithm is determined by the criterion |ϑ(s+ 1)− ϑ(s)| < 10−3,
where | · | representing the L1 distance.

Table 1: Parameter estimation from Bayesian and ML methods for three scenarios.

Scen. Meth. Stat. δ1,1 δ1,2 δ1,3 δ1,4 δ1,5 δ2,1 δ2,2 δ2,3 δ2,4 δ2,5 γ

I

Bayes

RB 0.024 0.029 -0.007 0.015 0.012 -0.026 0.019 0.023 0.056 0.003 0.011

RMSE 1.326 1.363 1.357 1.332 1.330 0.422 0.424 0.476 0.422 0.431 0.168

CP 0.956 0.953 0.946 0.953 0.957 0.941 0.925 0.900 0.928 0.926 0.964

ML

RB 0.057 0.039 0.040 0.057 0.050 0.065 0.071 0.057 0.078 0.060 0.057

RMSE 1.315 1.381 1.302 1.401 1.508 0.641 0.645 0.576 0.667 0.739 0.308

CP 0.889 0.922 0.878 0.900 0.833 0.922 0.922 0.900 0.889 0.867 0.811

Scen. Meth. Stat. δ1,1 δ1,2 δ1,3 δ1,4 δ1,5 δ2,1 δ2,2 δ2,3 δ2,4 δ2,5 γ

II

Bayes

RB -0.005 0.007 0.023 0.011 -0.005 -0.019 0.000 0.016 0.000 0.012 0.001

RMSE 1.068 1.011 1.065 1.015 1.044 0.349 0.283 0.275 0.355 0.332 0.124

CP 0.930 0.945 0.950 0.944 0.927 0.902 0.925 0.947 0.885 0.902 0.914

ML

RB 0.036 0.035 0.017 0.032 0.039 0.029 0.041 0.036 0.025 0.042 0.039

RMSE 0.944 1.010 0.880 0.900 0.985 0.331 0.358 0.323 0.328 0.346 0.150

CP 0.905 0.890 0.905 0.920 0.900 0.895 0.890 0.930 0.930 0.920 0.865

Scen. Meth. Stat. δ1,1 δ1,2 δ1,3 δ1,4 δ1,5 δ1,6 δ1,7 δ1,8

III

Bayes

RB -0.024 -0.010 -0.004 -0.010 0.010 -0.002 0.015 0.029

RMSE 1.121 1.096 1.087 1.083 1.083 1.221 1.124 1.155

CP 0.946 0.953 0.942 0.951 0.947 0.911 0.943 0.940

ML

RB 0.089 0.073 0.086 0.079 0.066 0.076 0.074 0.073

RMSE 1.098 1.095 1.087 1.179 1.015 1.028 0.993 1.018

CP 0.887 0.900 0.913 0.880 0.887 0.887 0.867 0.893

Stat. δ2,1 δ2,2 δ2,3 δ2,4 δ2,5 δ2,6 δ2,7 δ2,8 γ

Bayes

RB 0.011 -0.060 0.012 -0.073 0.030 -0.022 0.021 0.107 -0.001

RMSE 0.463 0.432 0.314 0.485 0.327 0.356 0.379 0.494 0.138

CP 0.915 0.909 0.977 0.916 0.960 0.931 0.947 0.918 0.946

ML

RB 0.087 0.095 0.087 0.085 0.102 0.070 0.087 0.097 0.091

RMSE 0.642 0.629 0.606 0.604 0.623 0.604 0.545 0.569 0.230

CP 0.880 0.887 0.893 0.887 0.873 0.900 0.920 0.900 0.893
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Table 1 displays the results of two inference methods, presenting relative bias (RB), root
mean square error (RMSE), and 95% coverage probability (CP). For point estimation, both
Bayesian and ML methods show small RBs and appropriate RMSEs. Notably, for scenarios
I and II, the RMSE of both methods generally decreases with increasing ni, as a larger
number of measurements enhances accuracy. Comparatively, scenario III sees a modest
reduction in RMSE due to the additional information from more systems, leading to more
accurate parameter estimation. However, for interval estimation, the Bayesian approach
significantly outperforms the ML method across all scenarios. This superiority is evident in
the CPs obtained by the Bayesian approach, which are close to the nominal level of 0.95.
In contrast, the CPs based on the ML method fall well below 0.95. Thus, we recommend
employing the Bayesian method for parameter estimation.

5.2. Model comparison in reliability estimation

We conduct another simulation study to compare the superiority of the proposed models
in reliability estimation. We consider scenarios I and III, assuming that system failures occur
in the second phase, with a threshold set at 75. Several benchmark models are considered,
which do not account for change points: a linear rIG model Λ(t) = t; two nonlinear models
with the following forms of Λ(t): i) power law Λ(t;α) = tα, and ii) exponential law Λ(t;α) =

exp(αt) − 1. For these benchmarks, we employ Bayesian methods, assuming α follows a
normal distribution N(5, 100), where a large variance means weak prior information for the
parameter α. The priors of other parameters remain consistent with these in section 5.1.
Figure 3 presents the average RMSE results for the MTTF of various models. It can be
observed that the results obtained by Bayesian method for the proposed model are smaller
than those obtained by other models. This indicates the accuracy of our model in predicting
system failures.

5.3. Change point estimation under real-time scenarios

To emphasize the superiority of the proposed model in real-time scenarios for change
point detection, we conduct a new simulation based on scenario II (ni = 40). Assuming the
data is dynamically acquired, we perform parameter estimation based on the existing data
yi,1:j and provide change point detection results. Figure 4 illustrates the average RMSE of
change point estimates at j = 20, 30, and 40. As expected, the RMSEs decrease gradually
with an increase in the amount of acquired data, and both methods exhibit very small
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Figure 3: Average RMSE of MTTF estimators based on various models.

RMSEs, indicating accurate identification of change points. In comparison, the Bayesian
method outperforms the ML approach, as it results in smaller RMSEs for each change point.
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Figure 4: Average RMSE of the change point estimates at three different time points.
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Figure 5: Capacity degradation data of 6 lithium batteries.

6. Case study

In this section, we demonstrate the proposed method using a dataset of lithium-ion
battery degradation. Lithium-ion batteries are extensively employed in commercial products
like mobile phones and electric vehicles. The failure of lithium-ion batteries can lead to
reduced device performance and loss of functionality. Therefore, accurately predicting RUL
distribution and delivering reliable maintenance actions are pivotal in ensuring the reliability
and cost-effectiveness of equipment operation (Zhang et al., 2023; Peng et al., 2018).

Figure 5 displays degradation data for six battery capacity measurements, where “Cy-
cle” represents one charging and discharging cycle of the battery. From Figure 5, we see
that the capacity degradation of each battery exhibits a two-phase characteristic, with an
initial phase showing a low degradation rate followed by a subsequent phase with a higher
degradation rate. Based on this dataset, our objective is to use the proposed model to fit the
degradation paths of these batteries and provide RUL prediction distributions (see Section
6.1). Following this, our objective is to extend the application to real-world scenarios and
present the outcomes of the proposed adaptive replacement policy (see Section 6.2).

6.1. Parameter estimation

We fit the degradation dataset by the proposed two-phase rIG model. Both Bayesian
and ML methods are used to estimate the parameters of the models. The settings for both
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Table 2: The estimation of the parameters and change points based on the Bayesian and ML methods.

Battery
Bayesian method ML method

β1 β2 τ β1 β2 τ

# 1

2.5% 0.422 2.198 22.257 0.497 2.511 22.987
Mean 0.536 2.437 23.187 0.510 2.632 23.011
97.5% 0.645 2.851 24.664 0.518 2.713 23.032

# 2

2.5% 0.523 2.013 24.365 0.638 2.113 25.245
Mean 0.608 2.356 25.336 0.658 2.215 25.321
97.5% 0.785 2.615 26.557 0.670 2.282 25.398

# 3

2.5% 0.336 2.161 26.316 0.405 2.412 26.773
Mean 0.468 2.424 26.761 0.414 2.531 26.801
97.5% 0.518 2.831 27.381 0.420 2.610 26.821

# 4

2.5% 0.467 1.993 24.151 0.561 2.120 24.923
Mean 0.569 2.345 25.008 0.576 2.221 24.971
97.5% 0.703 2.595 26.060 0.587 2.288 25.025

# 5

2.5% 0.495 2.162 23.184 0.624 2.382 23.932
Mean 0.588 2.418 23.893 0.642 2.496 23.940
97.5% 0.752 2.809 25.370 0.654 2.572 23.944

# 6

2.5% 0.464 2.130 24.722 0.559 2.324 25.561
Mean 0.566 2.408 25.576 0.574 2.440 25.625
97.5% 0.697 2.769 26.306 0.585 2.517 25.667

methods are consistent with those used in the simulation experiments. To evaluate the
convergence of the EM algorithm and the ARMS-Gibbs sampling algorithm, we present
the iteration process of the parameters for the EM algorithm, as well as the trace plots
and ergodic mean plots of the posterior samples in Supplementary Section S5. These plots
demonstrate that both algorithms converge rapidly. The estimation of the parameters and
change points are presented in Table 2. The γ estimates from the two methods (Bayesian
and ML) are 2.930 and 3.001, respectively, with corresponding 95% credible (confidence)
intervals: (2.615, 3.556) for Bayesian method, and (2.804, 3.165) for ML approach.

Moreover, to assess the prediction capability of the proposed model, we employ the first
30 data points to fit the model and predict the degradation rates for the last 19 cycles. As
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a comparison, we consider the two-phase IG model (Duan and Wang, 2017), assuming that
the change point occurs at the inspection time point, denoted as “Duan”. The unknown
parameters in their model are determined using the ML method. Since their method cannot
directly detect change points, they additionally use the Schwarz information criterion to
choose change points by balancing model fit and complexity. However, this method can
only identify the change point at a specific inspection point. In contrast, the proposed
model directly estimates change points with uncertainty that can occur at any time. Table
3 presents the RBs and RMSEs for training, prediction, and overall performance based on
five models, where “Proposed” refers to our proposed model using the Bayesian approach
for parameter estimation. From Table 3, it is evident that three models without considering
change points perform poorly in predictions with high RMSE and RB values. As an example,
we provide the fitted and predicted paths for battery #2 for each model in Figure 6. As
we can see the model without considering change points performs poorly in fitting the
data, rendering it challenging to make accurate predictions for future degradation paths.
However, the two-phase models effectively identify the locations of change points and yield
prediction values that closely align with the actual values. Compared to the “Duan” model,
the proposed model demonstrates superior predictive performance, yielding lower RMSE
and RB values. This improvement can be attributed to the proposed model’s more accurate
change point detection. As an illustrative example, we focus on the potential change point
location for battery #2 in Figure 6. It is evident that the estimated change points based on
the proposed model and the “Duan” model differ, and this discrepancy has implications for
the estimation of the degradation rate in the second phase, ultimately affecting the accuracy
of RUL predictions.

Next, based on the estimation results of the proposed model, we can derive the failure
time and RUL distribution for each battery, as discussed in Section 2.3. Here, we take
the Bayesian estimation as an example and present the reliability and density functions
of the failure time for each battery using data from the first 30 cycles. The results are
shown in Figure 7, with the threshold chosen as D = 20%. Based on (7), the MTTFs for
each battery are 41.984, 43.208, 43.658, 44.588, 43.320, and 42.257, respectively. Figure 8
presents the reliability and density functions of RUL for different batteries at the current
cycle (30-th), while the corresponding MRL are 9.352, 13.375, 14.354, 15.111, 13.180, and
11.925, respectively.
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Table 3: RMSE and RB results for different models.

Model
Training Prediciton Overall

RMSE RB RMSE RB RMSE RB

Proposed 0.448 0.248 1.538 0.060 1.020 0.175

Linear 3.476 1.442 3.685 0.156 3.558 0.943

Power 2.057 0.568 2.475 0.113 2.229 0.391

Exp 0.908 0.313 1.611 0.065 1.230 0.217

Duan 0.434 0.239 1.976 0.075 1.276 0.175

6.2. RUL-based adaptive maintenance policy

Based on the RUL prediction results, the proposed adaptive replacement policy can
be employed to determine the optimal replacement time for each battery. To highlight the
applicability of our proposed model in real-time scenarios, we consider the dataset from
cycles 1 to 30 as historical data, continuously acquiring new data over time. In this case,
both the estimates of the model parameters and the RUL distribution will be updated when
a new observation is obtained. Using the expected cost rate (22), we can determine candi-
date replacement time for each battery during the continuous data collection period. For
illustration purposes, the candidate replacement times for battery #2 and #3 are shown in
Table 4, where ci = 2, cc = 600, cp = 200, cb = 100, and ϖ = 1. Furthermore, the table also
includes the true RUL and predicted MRL. From Table 4, we can observe that the candi-
date replacement time is dynamically adjusted based on the RUL prediction. The optimal
preparation time for batteries #2 and #3 are 42 and 43, respectively. Once the preparation
is completed, the optimal replacement times are 43 and 44, respectively, which coincide
with the corresponding failure time of the two batteries. This indicates that preventive
maintenance should be performed for both batteries.

To highlight the impact of diagnostic accuracy on the adaptive maintenance policy,
we compare the results of the proposed two-phase model with the previously mentioned
models. Note that the “Duan” model assumes that the change point is given and does not
give the derivation of RUL distribution. Thus, we only compare the proposed model with
the other three models that do not consider change points (Linear, Power, Exp). Table 5
shows the optimal replacement times for 6 batteries under different models. Here, “FC”
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Figure 6: Degradation path training and prediction results for battery #2 using different methods, with a
zoomed-in view of the potential change point locations.

refers to the true failure time for batteries, and “P” and “C” indicate that the maintenance
actions are preventive and corrective maintenance, respectively. It can be seen from the
table that under the adaptive replacement policy, except for the power model, which has
five corrective maintenance actions, the final/optimal replacement time of all batteries in
other models is less than FC, that is, P action is performed.

Figure 9 illustrates the average cost rate for each policy, where ARP represents our
proposed adaptive replacement policy. The proposed two-phase rIG model under ARP is
referred to as ARP-TP. It can be observed that, except for the ARP-Power policy, other
RUL-based ARPs are significantly superior to CRP. Another noteworthy finding is that
ARP-TP is closest to IRP, compared to other policies. The reduction in average cost rate
based on ARP-TP may be attributed to the efficacy of our proposed two-phase model, which
proficiently captures change point locations and precisely fits degradation paths.

7. Conclusion

In this study, we propose a novel two-phase rIG model to model monotonically degrad-
ing data with a change point. The model takes into account variations in both change points
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Figure 7: Reliability and density functions of failure time based on Bayesian method.
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Figure 8: Reliability and density functions of RUL based on Bayesian method at 30-th cycle.

and model parameters among different systems to address subject-to-subject heterogeneity.
The failure time and RUL distributions for the two-phase rIG model are derived. We em-
ploy likelihood-based and Bayesian methods for parameter estimation to develop the EM
and ARMS-Gibbs algorithms, respectively. In addition, we propose an adaptive replace-
ment policy based on RUL distribution. Simulation studies are conducted to compare the
performance of Bayesian and ML methods, as well as to compare the proposed model with
other candidate models, across different scenarios. The results indicate that the Bayesian
method outperforms the ML method in obtaining interval estimation, and the proposed
model demonstrates accurate MTTF prediction compared to other models. Furthermore,
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Table 4: Candidate replacement time for batteries #2 and #3 at consecutive data-acquisition epochs, with
optimal preparation time of 42 and 43, respectively.

Cycle(×300)
Battery #2 Battery #3

Real RUL MRL T2,j Real RUL MRL T3,j

31 12 13.865 43 13 13.228 46

33 10 11.219 41 11 10.278 43

35 8 7.624 41 9 8.389 42

37 6 5.986 41 7 6.884 42

39 4 4.040 42 5 4.206 43

41 2 2.764 43 3 2.318 44

42 1 1.235 43 2 1.556 44

43 - - - 1 0.380 44

we apply the proposed model to six battery datasets and compare it with several bench-
mark models. The results demonstrate that our model can accurately identify the locations
of change points and fit the degradation paths of the batteries well. By continuously acquir-
ing inspection data, we dynamically update the estimation of model parameters and RUL
distributions, enabling adaptively adjusted replacement plans. Compared to other policies,
we find that the proposed policy provides an accurate replacement time that is closer to the
product failure time without exceeding its effective lifetime.

The paper preliminary explores an adaptive replacement policy to demonstrate the
impact of model construction and RUL prediction on subsequent maintenance decisions.
However, there are several potential areas that warrant further investigation. For instance,
in scenarios where the change point has not yet occurred during the early stages of the degra-
dation process, training a two-stage degradation model becomes challenging. Therefore, dy-
namic change point detection becomes crucial for effective decision-making and necessitates
further exploration (Fan and Lu, 2020). Additionally, when a system exhibits dependen-
cies across multiple PCs, a multivariate two-stage degradation model should be considered
(Zhang et al., 2024a; Wu et al., 2020). This would involve more complex maintenance
policies and require exploration into optimal strategies.
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Table 5: Maintenance cost rates for 6 batteries under the adaptive replacement policy.

Battery FC
Proposed Linear Power Exp

T ∗
i Action CR T ∗

i Action CR T ∗
i Action CR T ∗

i Action CR

1 40 37 P 7.351 37 P 7.351 40 P 6.950 35 P 7.657

2 43 43 P 6.605 42 P 6.714 - C 17.909 40 P 6.950

3 44 44 P 6.500 44 P 6.500 - C 17.556 42 P 6.714

4 45 44 P 6.500 43 P 6.605 - C 17.217 41 P 6.829

5 41 40 P 6.950 39 P 7.077 - C 18.667 38 P 7.211

6 42 42 P 6.714 41 P 6.829 - C 18.326 40 P 6.950

Supplementary Materials

Supplementary document: (a) proof of the additivity of rIG distribution; (b) derivation
of theorems 1 and 2; (c) technical details of the EM algorithm, including conditional expec-
tations in the E-step, Q-function, and procedural steps; (d) technical details of the Bayesian
analysis, containing full conditional posterior distribution; and (f) additional results of the
case studies, including iterative results of model parameter estimation for Bayesian and ML
methods.
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