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ABSTRACT ARTICLE HISTORY
Progressive-stress accelerated life testing (PSALT) is a special type of Received 6 March 2022
experiment that tests the lifetime of a product with continuously varying Accepted 30 October 2022
stress levels. Due to the limitations of testing equipments and costs, the KEYWORDS

lifetime data collected by PSALT are usually censored and have group Progressive-stress
effects. In order to deal with the two characteristics in the data, this paper accelerated life test; two-
presents a novel PSALT model with group effects under progressive stage method; gauss—
censoring. Two-stage and Gauss-Hermite quadrature methods are pro- hermite quadrature;
posed to estimate the model parameters, while the interval estimates are progressive censoring
constructed by bootstrap and the asymptotic theorem, respectively.

Simulation studies are conducted to compare the proposed model with

the traditional models without group effects in terms of the relative bias

and root mean squared error under different scenarios. The results show

that the proposed model can detect group-to-group variation, and that

the models without group effects will result in large biases for estimating

the characteristic lifetime of the product. Finally, the proposed model is

validated by a real dataset.

1. Introduction
1.1. Background

Life tests are essential for assessing the reliability of electrical, mechanical, and medical devices, etc.
With the development of advanced technologies, traditional lifetime tests are no longer suitable
because modern assets are highly reliable. Accelerated life testing (ALT) is a way to solve this
problem by increasing certain environmental stresses to collect failures in a shorter period of time.
By using ALT, the manufacturers can provide data showing how well a product works, how long it
will last and how it will fail in the future. Determining a product’s life expectancy before it goes into
production will prevent frustration and unnecessary additional warranty costs, which can reduce
a company’s financial bottom line. The type of ALT can be classified according to its stress loading,
for instance, constant stress, step stress, progressive stress, and cyclic stress (Nelson, 2009).
Among them, progressive stress ALT (PSALT) has the highest efficiency to shorten the lifetime
of the assets and is flexible to be implemented. The stress loading is continuously increasing, which
can expedite the test unit to fail and further reduces the total testing time. To the best of our
knowledge, (Prot, 1948) was the first to study this type of stress loading on fatigue testing of
materijals. After that, PSALT was applied to test other products, e.g. capacitors (Starr & Endicolt,
1961), insulations (Solomon et al., 1976), and integrated circuits (Chan, 1990). Except for practical

CONTACT Ancha Xu @ xuancha@mail.zjgsu.edu.cn @ School of Statistics and Mathematics, Zhejiang Gongshang University,
Hangzhou 310018, China

© 2022 International Chinese Association of Quantitative Management


http://orcid.org/0000-0003-3289-2720
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/16843703.2022.2147690&domain=pdf&date_stamp=2022-11-29

2 (&) L ZHUANGETAL.

applications, statistical inference methods for PSALT data have also attracted many attentions in
past decades (Yin & Sheng, 1987)- (Kumar Mahto et al., 2020). For example, (Lin & Fei, 1991)
proposed a nonparametric approach to estimate the lifetime distribution under PSALT. (Mohie EI-
Din et al., 2017) utilized classical and Bayesian inference under PSALT when the lifetime of test
units was assumed to follow a logistic exponential distribution.

The above studies on PSALT are all based on the assumption that the lifetime of test units is
independent of each other. However, assets are assigned in a test stand for a certain stress
acceleration scheme, and then the failures in the same chamber are no longer independent of
each other. For example, (i) assets assembled by different sources of raw materials are assigned to
the same test group, leading to the existence of batch effects (Seo & Pan, 2017); (ii) the stress is
applied directly to the test stand instead of individual test assets, which will cause block effects in the
resulting data (Kensler et al., 2014). It can be seen that both cases may result in a group structure,
which means that the lifetimes within the same group may be correlated. If these correlations are
ignored in data analysis, inaccurate results will be obtained. Moreover, with the limitation of testing
time, the assets will be periodically removed at some certain time points during the testing process,
and thus the collected data is progressively censored (Wang et al., 2014). Therefore, the data with
group effects and progressively censored are common in PSALT.

1.2. Motivation

The research to be proposed is motivated by a real example from the insulating oil test (Nelson,
2009). The experimenter increased voltage linearly with time at a specified rate, v;(V/s), in order to
make specimens down faster, and the breakdown voltage was recorded. The dataset can be found in
Table 1, which includes three groups, each containing 60 products and the failures are observed.
Due to the diversity of raw materials and stress profiles, group effects may exist in this experi-
ment. To illustrate this situation, assume that the lifetime of unit in each group independently
follows Weibull distribution, and that the relationship between scale parameter and the stress
satisfies the inverse power law. We pool all the data together and estimate the model parameters by
the maximum likelihood (ML) method. Then, the residuals between fitted cumulative distribution
function (CDF) and empirical CDF are calculated. Figure 1 is a violin chart of the fitted residuals for
each group. It can be intuitively seen that the differences among three groups are significant. For
illustrating this point clearly, we perform analysis of variance (ANOVA) based on the residuals.
Because the variance of each group is not homogeneous, we use Kruskal-Wallis (KW) test by ranks
that is a nonparametric method to implement one-way ANOVA test (Kruskal & Wallis, 1952). The
test statistic that reflects the variance in ranks is KW chi-squared statistic, which asymptotically
follows the chi-square distribution under the null hypothesis that the medians of all groups are
equal. More details can be found in (Kruskal & Wallis, 1952). Using the function kruskal.test() in
R software, ANOVA for the residuals can be implemented easily. The value of KW chi-squared

Table 1. The PSALT data of insulating oils (Nelson, 2009).

Groups v;(V/s) Breakdown Voltage(V)
34 34 34 35 35 35 36 38 38 38 383939394040 40 40 41 41 41 41 41 41 42 42
1 10 42 42 42 43 43 43 43 43 44 44 44 44 44 A4 A4 45 45 46 46 46 46 46 47 47 47 47

47 48 49 49 49 50 51 52

34 36 37 39 42 43 43 43 44 45 45 45 45 45 46 46 46 46 46 47 47 47 47 48 48 48
2 100 49 49 49 49 49 50 50 50 50 50 50 51 51 52 52 52 52 52 53 53 53 53 53 53 53 53

53 54 54 54 55 55 55 58

41 41 51 51 51 51 53 53 53 53 54 54 54 54 55 55 55 55 56 56 56 56 57 57 57 57
3 1000 57 57 57 58 58 58 59 59 59 59 60 60 60 60 60 60 61 61 62 62 62 62 63 63 63 63

63 64 64 65 65 65 65 69
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Figure 1. The residuals of each group.

statistic is equal to 72.041, and thus the p-value is 2.272 x 106 which is less than the significance
level 0.05. Thus, we accordingly reject the null hypothesis and can conclude that there are
significant differences between the test groups. That is, group effects exist in the data and should
be included in the model. Otherwise, it may cause large bias in estimating the reliability of asset and
results in wrong decisions (Seo & Pan, 2017; Zhuang et al,, 2021).

Based on the observed patterns of the data, our goal is to solve the following two problems: (1)
How to build a model for the PSALT data under progressive censoring with group effects? (2) How
to extrapolate the characteristics lifetime under usual operating conditions? As we can see, whether
the second problem can be solved depends on the first problem, and the second one is a general
issue concerned by the manufacturer, which will help make a series of reliability decisions, to name
a few, warranty policy, inventory control, design of new product, and so on.

1.3. Related work

Traditional ways to analyze product reliability often assume that the data come from a randomly
designed experiment (Meeker & Escobar, 1998; Zhang et al., 2022). Nonetheless, when external
effects change (e.g. block or batch effects), the data may no longer be completely randomized,
instead they usually lead to grouped structures of experimental units. (Ledn et al., 2009) claimed
that if these external effects are ignored in the model, it would cause unreasonable estimates of
quantile lifetime and probabilities of failure at the usual stress level, as well as misleading predic-
tions of the failure time for a new unit. Other studies have also emphasized the necessity to
incorporate external effects into lifetime analysis (Feiveson & Kulkarni, 2000; Lv et al., 2017).
Several studies have been conducted to incorporate group effects into analysis. For usual stress
test (UST), (Zhuang et al., 2021) considered both heavy censoring and batch effects in the model.
And they found that ignoring the group effects in the interval failure data will cause inaccurate
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predicted number of failures. For constant stress ALT (CSALT), (Freeman & Vining, 2010)
provided two-stage (TS) method to analyze data from designed experiments which contain sub-
sampling. However, they only considered the point estimation of the model parameters, and the
estimate bias cannot be neglected in the case of small sample size. More importantly, the interval
estimation cannot be obtained by the TS method, which is more useful in describing uncertainty of
parameters. Therefore, the TS method has been extended in recent years by (Wang et al., 2016,
2019; Lv et al., 2019). For example, (Wang et al., 2016) developed a bootstrap method based on an
unbiased factor, which could correct estimate bias and obtain interval estimation simultaneously.
For step stress ALT (SSALT), (Seo & Pan, 2017) proposed a generalized linear mixed model to take
the group effects into account under exponential distribution. They used adaptive Gaussian quad-
rature and integrated nested Laplace approximation to estimate the model parameters. (Wang,
2020) extended the model of (Seo & Pan, 2017) under the assumption of Weibull distribution.

The above works primarily deal with analyzing UST, CSALT and SSALT data for reliability
experiments with group effects. However, the case of PSALT has not received much attention in the
literature. In addition, they only considered conventional censoring schemes such as type-I
censoring or type-II censoring, while progressive censoring allows the removal of test units at non-
terminal points, and utilizes the available resources effectively, which is more flexible and efficient
than conventional censoring schemes (Balakrishnan & Aggarwala, 2000; Montanari & Cacciari,
1988). To fill this gap, in this article, we first construct a model for the PSALT data with group
effects by introducing random variables into the scale parameter. To the best of our knowledge, it
has been not well studied yet. Second, we incorporate progressive censoring scheme into the
PSALT. According to this generalized censoring scheme, engineers can carry out more flexible
experiment strategies in the design stage. Then, the TS and Gauss-Hermite (GH) quadrature
methods are proposed to obtain the point estimates as well as interval estimates of the model
parameters.

1.4. Overview

The rest of the paper is organized as follows. Section 2 introduces the modeling framework for
PSALT with group effects under progressive censoring. Section 3 considers the statistical inference
for the proposed model based on two different methods. Section 4 is devoted to simulation studies,
in which the results of neglecting group effects are assessed under different scenarios. A case study is
provided to illustrate the performance of the proposed model in Section 5. Finally, we give some
conclusions and discussions of this paper.

2. Model
2.1. PSALT model with group effects

Let T be the lifetime of an asset and assume that T follows the Weibull distribution with scale and
shape parameters a and b, respectively. The probability density function (PDF) and CDF of T are:

() = bt;l exp{—G)b}and F(t) = 1— exp{—G)b}, a,b>0, (1)

In PSALT, the scale parameter a is often assumed to have a relationship with the function of
stress. In this paper, we assume the relationship satisfies the inverse power law, i.e.

a(t) = , ()
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where ¢ and d are the unknown parameters that are positive, and s(¢) is the stress level, which is
a function of t. Let so be the used stress level, and the corresponding characteristic lifetime is
apg = (csod)fl. Furthermore, the cumulative exposure model (Nelson, 2009) is assumed in this
paper, which means the distribution of the remaining life of a test asset depends only on the
cumulative exposure it has received, no matter how it was exposed. For Weibull distribution, the
shape parameters are empirically found to be correlated with the failure mechanism. Thus, we
assume that by = b; = - - - = by = b to guarantee that the failure mechanism under PSALT remains
unchanged. See (Nelson, 2009) for details. Let s;(t) = v;t,i = 1,.. ., k, where v; is the increasing rate
of stress in the i-th group which is a constant given by engineers before the experiment. Note that
the linear form of s;() is common in practical experiments and has been widely utilized in literature
(Abdel-Hamid & Al-Hussaini, 2011; Mohie El-Din et al., 2017). Except for linear increasing stress,
there are also other forms of varying stress in PSALT, such as: cyclical stress (Cheng & Elsayed,
2017; Zhu et al., 2021; Kim & Sung, 2022), randomly varying stress (Gerville-Reache & Nikulin,
2007; Zheng & Ellingwood, 1998). Furthermore, we introduce random variables y;s to reflect group
effects and assume that group effects are exerted to the scale parameter a;, which is given by

—log(ai(t,u;)) = logc+ dlog(vit) +logu;,, i=1,...,k, (3)

where log y; is assumed to follow normal distribution:
logu,~N(0,0%), i=1,...,k (4)
0” is a variance component of the group effects and it is one of the unknown parameters in the

model. Under the cumulative exposure model, the CDF under s;(t) given y; for an asset in the i-th
t

. _n - o dw vt ay
group is: G;(t|y;) = Fi(At|u,),i =1,...,k, where At|y, = Jo Uaedd] = 1 and Fi(-) is the

CDF defined by (1). Therefore, given y,, the PDF and CDF can be formulated as

&i(tly;) = % (f) o exp l— (é) A} and G;(t|y;) = 1 — exp [— (5) A] ; (5)

respectively, where

d 1 1/(d+1)
o = </4jvd> and A=0b(d+1). (6)

2.2. Progressive censoring

Progressive censoring is widely used in the reliability experiment. (Herd, 1956) was the first to
discuss estimation of the population parameters based on progressively censored samples. (Cohen,
1963) discussed the importance of progressive censoring in reliability experiments. Due to its
effectiveness for saving experimental time, many scholars have incorporated progressive censoring
scheme into reliability analysis in recent years (Chen et al., 2016; Wang et al., 2014; Singh et al.,
2022; Mahto et al., 2022). There are two types of progressive censoring schemes, called type-I and
type-1I, which are introduced detailedly as follows:

(1) Type-I progressive censoring: In the i-th group, the experimenter conducts a life test at
each fixed time (Tj, ..., Tiy,) until time to Tj,,, records the number of failures c;;, and
randomly remove R;; non-failed units at each fixed time.
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Figure 2. Two types of progressive censoring for the i-th group.

(2) Type-II progressive censoring: In the i-th group, the experimenter records the first m;
failures: (ti, ..., tm,). At the same time, when one unit fails, R;; non-failed units will be
randomly removed.

Figure 2 shows the structure of the two censoring schemes for the i-th group. It is clear that there
is a fundamental difference between the two schemes. In the case of type-I censoring, the duration
of test is fixed and the number of failures is random, while in the case of type-II censoring, the
duration of test is random and the number of failures is fixed. Without loss of generality, we mainly
consider the case of type-II progressive censoring scheme, because the procedures of statistical
inference are similar for the two cases.

Assume that there are k groups in the PSALT with progressive type-II censoring scheme. In the i-
th group, a number of n; identical units are tested. And we suppose that the failure number is ; and
the progressive censoring scheme is R; = (Rji, . . . , Ry, ), where R;; > 0 and Z;L Rjj + m; = n;. Let
ti < ... <ti be the observed failures in the i-th group. At the j-th failure time t;, R; units are
removed, j = 1,...,m;. Specially, when R;; = R = ... = Rj_1) = 0, Ry, = n; — m;, which cor-
responds to the conventional type-II right censoring scheme. Thus, the observed data
is D= {(t;,Ry),i=1,....kj=1,...,m}.

3. Inference

In this section, two methods for estimating model parameters are briefly discussed. The first one is
to use the TS method to obtain the point estimation and utilize bootstrap method to calculate the
corresponding interval estimation. The second one is to carry out GH quadrature to approximate
the likelihood function and the interval estimation of parameters can be computed by asymptotic
normality theorem.

3.1. Two-stage method

The procedures of the direct TS approach with application to PSALT under progressive censoring
with group effects are described as follows:
1. The goal of the first stage is to obtain the estimate 6 of 6, where 0 = (a1, ..., ak, A). Given the
observed data D, the likelihood function is:
k
=11

i=1

i

A; 8i tt]|!’l Gi(tij|‘ui))le ) (7)

1

=
where A; = n; H;":Il (ni - . ) Then, the log-likelihood function can be formulated as
follows:
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0) = Z{IOgAi - ilog [gi(tijwi) (1- Gi(tij|yi))le} }’ Y

i=1 =1

where g;(t;|u;) and g;(t;lu;) are expressed by (5). Taking the first partial derivatives of log-
likelihood function in (8) with respect to 0 and equating each to zero, we obtain the following

equations:
I (A A
—aw=§ [a (sz+1)<wlﬂ =0, i=1,...,k )

£ [ IR | SO

Given A, the solution of (9) is

" (Ry+1)E 1/4
ai_<w> =1,k (11)

mj

Then, substituting (11) into (10), after some algebraic calculations, we get

- MM

tym
log d | =0, (12)

(3 + 1)4)}

mi (R,] + 1)1’)’[,‘%
> (R + 1)t

where M = Y5 m; is the number of all failure units. The MLE of A is the solution of (12) that can
be computed using some iteration procedure, e.g. the Newton-Raphson iterative algorithm and the
quasi-Newton method, which is denoted as 1. The existence of the solution of (12) is shown in
Appendix. Replacing A byi in (11), the MLE of «; can be obtained and denote it as &;.

2. The second stage aims to obtain the parameters in distribution of group effects. We take
logarithm for (6), where «;s is replaced by &;s. In this stage, &;s obtained in the first stage are treated
as the ‘obsevations’ and let y; = log &;. Then we have the following linear model:

yi = log&; = B, + Bxi + &, (13)
where x; = log v;, B, = & ;Ll 9B, =4 and g = lgi/;" . This is a typical linear model, where

B, and §; are the intercept parameter and the slope parameter, respectively. The error terms ¢;s are

independent of each other for different groups, and follow normal distribution N(0, 0?), where
I

9 = Gy

estimators of B, and f3, are, respectively, given by

is the variance of ¢;. According to the Gauss-Markov theorem (Rao, 1965), the

3 :Zle (xi—i)(yi—?) andp
D Y INC )y ’

where X = %Zk ;and y = kzl vi- Then, using following formula to get the estimates of
(b,

=y - B, (14)

parameters
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i i)t(ﬁl +11),
(ﬁﬁ})exp{%} ’ (15)
d :—%.

Based on BO and Bl, we can get the residuals 6 = Vi — BO — lei, i=1,2,...,k Thus, the estimate
of 0% can be obtained by

0f =L =L (16)

By plug-in method, for any continuous function of the model parameters, e.g. C(b, c,d, 0?), the

estimate could be C (I;, c, Ei, &2). Specially, for the characteristic lifetime at the normal used

condition ag = (cso?) ", the estimate can be obtained by

ay = (Esoa)_l. 17)

Using the delta method, the interval estimate of certain continuous function of the parameters
{ai,A,i=1,---,k} can easily be calculated (Zhuang et al., 2021). However, the estimate of ¢ is
based on ‘pseudo sample’ &;s, which implies that the interval estimate of ¢? cannot be calculated
directly by the asymptotic normality theorem (Freeman & Vining, 2010). To solve this problem, we
used bootstrap method to construct the interval estimates of the model parameters. This method
has been widely used in reliability field, for example (Bera & Jana, 2022; Palayangoda & Ng, 2021).
The procedure of the bootstrap resampling approach is provided in the Algorithm 1.

Algorithm 1: Bootstrap algorithm based on TS method.

Input: Observation data D. o
Output: Point estimates and corresponding interval estimates for parameters ¢ = (b, ¢, d, 6, do).

1 Obtain the estimate 6 based on the first stage;

2forbin{l1,2,...,B} K

3 Generate bootstrap sample D" from (5), when the parameter vector 6 is replaced by 6;

4  Caculate b, ¢, d, 6, ap, by Equations (15), (16) and (17), respectively;

5 end

6 Calculate the point and interval estimates of the parameters based on the bootstrap results in steps
3 and 4.

Remark: There are several ways to implement bootstrap approach. Another bootstrap approach
is a little different in generating bootstrap samples compared with Algorithm 1. Firstly, we generate

B random numbers log /,t,@ from N(0,6%),i = 1,..., k based on the model (4). Then, the bootstrap
sample in each group from F (t; ‘uEB>, &) in (5) can be generated. Other steps are the same as

Algorithm 1. Since the results obtained by the two bootstrap methods are similar in the simulation
studies, we only use Algorithm 1 to obtain the interval estimation of the model parameters.
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3.2. Gauss - Hermite quadrature

GH quadrature is a form of Gaussian quadrature for approximating intractable integrals. Compared
with Monte-Carlo integration, GH quadrature could provide an accurate approximation for the
integral with a much lower computational budget. (Seo & Pan, 2017) and (Wang, 2020) applied this
method into SSALT with group effects. The GH quadrature applied in PSALT with group effects
can be summarized as follows:

The marginal likelihood of all of the observations in all groups can be constructed by integrating
out the group effect for each group and then multiplying the likelihoods of all groups. That is,

k 00 m;
L&) = ]._.[Aij [Hgi(ttﬂ#i) (1- Gi(tij“‘z‘))Rﬁ m(p)dp;, (18)
i=1 o0 i
where £ = (b, ¢, d, 0) is the vector that needs to be estimated, 7(y;) is the PDF of y;, which follows
log-normal distribution, 7 (y;) = (Zﬂaz‘uf)il/ g exp{—log® 4,/ (20%)}. Because the intractable inte-
gration in the likelihood could not be solved in closed form, we use GH quadrature to achieve an
accurate approximation of log-likelihood in (18). It is important to note that, in order to use GH
quadrature, a term with the form e should exist in integral. Let Y= exp(ﬂari), the log-
likelihood in (18) can be expressed as

-

Il
—

—o0 | j=1

(19)

~
~

I~

I | m k
1°g{hz [ngf(“f"w) (- Gf<fa-|m>>R""] ’ f} +;los(4)
=1|j= i=

where [ is the number of quadrature points, vis are fixed evaluation points and wys are the
associated weights. The values of {(7, win),h = 1,...,1} are related with I, and the details can
be found in (Liu & Pierce, 1994). Notice that a small value of [ will cause inaccurate approximation,
while a large value of I will increase the computational cost. Thus, we choose [ = 20 as recom-
mended by (Liu & Pierce, 1994). After approximating the log-likelihood in (19), the estimation of
parameters is then achieved through numerical optimization algorithm, for instance, Newton-
Raphson algorithm. However, the result for direct optimizing €(&) is sensitive to the initial values of
the parameters. The point estimate by the TS method is used as the initial value in this paper.

4, Simulation study

In this section, simulation studies are implemented to assess the proposed model and inference
methods. We choose the number of group k = 3,5 and 7. For each k, five progressive censoring
schemes (progressive or conventional type-II censoring) are considered with different sample sizes
ni, i =1,..., k. The details of the sample sizes and censoring schemes are summarized in Table 2.
For each scenario, the data are generated from the Weibull distribution as specified in (5) with the
model parameters (b, ¢,d) = (1.5,0.5,2). Thus, the values of 8, and f3, are equal to 0.597 and
-0.667, respectively. Let the usual stress level be sp = 1 and thus the corresponding characteristic
lifetime is ap = 2. In addition, variance component of group effects o is assigned as 0, 0.3, 0.5 and
0.8. 0 = 0 implies that there are no group effects in the model, for which case we want to show the
performance or robustness of the proposed model when the model is misspecified. Under these
settings, we will generate 1000 samples for each combination of parameters and censoring schemes.

In order to illustrate the necessity for considering group effects in PSALT data, we also add two
other models for comparison. The first model assumes that all test units are randomly independent
and the correlations of observations among groups are ignored, which corresponds to ¢ = 0 in the
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Table 2. The progressive censoring schemes for k = 3,5 and 7.

Ny Nk Viy .. Vg My Tk Ri,.. o, Ry
1 (20,15, 10) (0.2,0.3,0.4) (12,9,6) Ry = (0,...,0,8)
R = (0,....0,6)
R, = (0,...,0,4)
2 (20,15,10) (0.2,0.3,0.4) (12,9,6) R = (8,0,...,0)
R, = (4,0,...,0)
R3:(47Os"'70)
3 (20,15, 10) (0.2,0.3,0.4) (12,9,6) Ry = (4,0,...,0,4)
R2:(2707"'7072)
Ry = (2,0,...,0,2)
4 (20,15, 10) (0.2,0.3,0.4) (12,9,6) Ri=(1,...,1,0,...,0)
R,=(1,...,1,0,...,0)
Ry=(1,...,1,0,...,0)
5 (20,15, 10) (0.2,0.3,0.4) (12,9,6) R =(0,...,0,1,...,1)
R, =(0,...,0,1,...,1)
Ry =(0,...,0,1,...,1)
6 (30,25, 20,15, 10) (0.2,...,0.6) (18,15,12,9,6) Ry = (0,...,0,12)
Rs = (0,...,0,4)
7 (30,25, 20,15, 10) (0.2,...,0.6) (18,15,12,9,6) Ry = (12,0,...,0)
Rs = (4,0,...,0)
8 (30,25, 20,15, 10) (0.2,...,0.6) (18,15,12,9,6) R = (6,0,...,0,6)
Rs = (2,0,...,0,2)
9 (30,25, 20,15, 10) (0.2,...,0.6) (18,15,12,9,6) Ri=(1,...,1,0,...,0)
Rs=(1,...,1,0,...,0)
10 (30,25, 20,15, 10) (0.2,...,0.6) (18,15,12,9,6) R =(0,...,0,1,...,1)
Rs = (0,...,0,1,...,1)
1 (40,35,...,15,10) (0.2,...,0.8) (24,21,...,9,6) Ry = (0,...,0,16)
R, = (0,...,0,4)
12 (40,35,...,15,10) (0.2,...,0.8) (24,21,...,9,6) Ry = (16,0,...,0)
R; = (4,0,...,0)
13 (40,35,...,15,10) (0.2,...,0.8) (24,21,...,9,6) Ry = (8,0,...,0,8)
R, = (2,0,...,0,2)
14 (40,35,...,15,10) (0.2,...,0.8) (24,21,...,9,6) Ri=(1,...,1,0,...,0)
R, =(1,...,1,0,...,0)
15 (40,35,...,15,10) (0.2,...,0.8) (24,21,...,9,6) Ri=(0,...,0,1,...,1)
R, =(0,...,0,1,...,1)

proposed model. The other model assumes that all groups have a common shape parameter, while

the scale parameters of each group, a;(t) = W, are different. The two models are denoted as

‘pooled model’ and ‘fixed model’, respectively. For the pooled model, the parameter estimation will
be obtained by ML method and the corresponding interval estimation can be calculated by the
asymptotic normality theorem. For the fixed model, the parameters are estimated by TS approach.
Thus, for a generated sample, we will fit the data by the three models, and for the proposed model,
both TS and GH methods are utilized to estimate model parameters.

Tables 3-6 list the relative bias (RB) and the root-mean-squared error (RMSE) of parameter
estimators J = (b, ¢,d, 6, a) based on the three models under different simulation scenarios, where
‘GH’, ‘TS, ‘Pooled’ and ‘Fixed’ denote the results based on the proposed model with GH and TS
methods, pooled model, and fixed model, respectively. For the estimates obtained from 1000
samples, we find that there are many abnormal estimates based on the pooled and fixed models,
especially in the case of large 0. To make the results comparable, we remove the 10% upper and the
10% lower of 1000 estimates in each model. The RB and RMSE for the rest 800 estimates are defined
as follows:

RB:i?iﬂ"_ﬂ, RMSE = ifi ﬁi—ﬁ)z. (20)



QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT il

LyL0 [SY0  8€00 9870  0ZLO €5€0  0€0°0 00C0  €€LO SIF0  SE00 €620 0710 [SE0 0€0°0 €070 s
0€L'0 8OY0 €00 L9Z0  ZLLO 90 8200 %10 €210 96€0  Z€00 8Lz TLL0 SPEO 8200 961°0 vl
LELO oS0 9600 60  STLO 69€0  LEOO [1T0 EELO SEV0  ¥EOO S0 STLO vLED  LEOD 0270 €l
LELO 6h70 €600 80  +TLO L0 LEOD €070 6710 oPro  ZE00 EC0 $TL0 7860 LE00 9070 4
710 0670  8E00  LEED  +TLO €60 LE00 [(TT0 6ELD Er0  9€00 6970  STLO 8LE0  LEOO €670 L
8070 TSL0 SO0 00 0610 2SO L¥00 9z€0 8610 €890 LS00 LZEO 1610 0850  /¥0°0 0E€0 oL
£L0T0 ¥890  SS00  LOYO  68L0 SIS0 L¥00 8LED  +0TO ¥S90 LS00 8E0 760 €850  LY00 0Z€0 6
LLT0 lZ£0 9500 L0 S6L0 [850 8500 62€0  LOTO 9890 €500 [9€0  L6L0 6650 6700 ZE€0 8
5610 $990  0S00  S6E0 /810 9,50 9500 SIE0 1610 o0  8v00 S0 /810 LSO 9Y0°0 L1€0 L
LT 900 1900 670 €610 ¥650 8500 ¥PEO  0LTO ¥890  S500 LIEO 9610 v090 6500 LYE0 9
6050 v98L 90 L0  TLYO eyl LLL0 S990 680 €91l TELO 1690  SI¥0 9Tyl 0TL0 ¥99'0 S
9870 gL YELO  €6L0 690 Lyl ELLO 6190 0870 oL STLO SLLO TUYO VoL 9L £89°0 ¥
8570 SSL 6LL0 L0 SPHO 9CL 9010 0/90 9570 €7l SLLO 8690 Ly 0 LTl S0Lo €990 €
6670 2081 €0 850  ELKO oyl SLLO w90 760 681 STLO ¥690  LLYO 9ErL  SLLO w90 z
1250 6861  SPL'O 0S80 /YO L&Vl wLLIO 5690  €8v0 ¥89L 9710 9EL0  ELt0 Sst'L 9LL0 L0£0 L
ISNY
SE00- €600  6€00 9600  L00D 1200 €000 5100 ST00— 0900 8700 9200  $000- €200 9000 100 s
6200— 7900  ¢€00 1800 LO00—  S000 €000 6100  6l00- €00 1200 ¥Z00  €000- 8000  S00°0 0200 vl
S200- 600 6200  [600 000 1200 2000- 1200 8L00— 000  LZ00 6200 2000 ST00 1000 7200 €l
€100-  ¥900  9L00  LL00 6000 S100  £000—  ¥LO0  ¥000— 6500 000 S100 8000 [100  9000- SO0 4
SE00—  S800  6€00  LZL'O  LO00— 8000 €000 6200  6200— LS00  T€00 9900  €000- 6000 9000 €€0°0 L
ZE00-  9vl'0  0W00  SOLD  0LOD 900  ¥000-  ¥200 00~ 010 9200 LE0O  £000 SO0 1000— 9200 oL
€600~  TLLO  O0v00  S800 000 W00 2000 9100  8l00- 8800  ST00 6100 1000 900 5000 100 6
8200-  ¥TL'0  9€00  YLIO 6000 9600 €000-  ¥EO0  Zl100- 8600 200 0v00 9000 P00 1000 ¥E0'0 8
0L00- 0800  ZLOO 6800  8LOO €200  €100-  0S00  L00O 6900 5000 LEOO 9100 €200  0L00—  LEOO L
P00~ 0SL'0 0500  SZL'0  L00D P00 000 VE0O  ZE00— 6600  O¥00 SO0 Z000- 6400 8000 9600 9
LE00—  £L10  LE00  Lpl0  T00 s8I0 LLOO-  T/O0  6L00—  8LL0  9L00 €00 %000 LZ0O  9000- €00 S
8000-  ¥LZO  6L00  YLIO 6400 610 8L00- 9500  LLOO 7810 1000 SO0 9200 210 SI00- 500 ¥
[000-  [pl0  LLOO  6YL0 S5O0 LELO  9200- /800 6000 SLI0  $000— 1800 8200 [500  0200- 600 €
1000~  ¥2Z0 €00 7600 00 €170 L100- €00 €100 lZzo  2000-  LE00 1200 €EI0 000 K00 z
8l00~  $TC0  LT00 8910  THOO 991'0  6000- 8600  9000- SO €00 010 8100 800 ¥000- 8600 L
o p > q op p > q op p > q op p > q
paxi4 pajood sl HO
ay

‘0 = 0 J3pUN S|9POW JUISYIP UO paseq ISINY pue gy € 3|qe]



12 L. ZHUANG ET AL.

2T0 ¥S80 L£00 €8v0  8EE0 180 €00 €010 LLTO 8080 1900 LZr0 7870 990 9900 sovo sl
o LLLO L£00 90 LLEO o 6900 99€°0 SLTO 6YL0 890°0 LLE0 SLTO £0L0 $90°0 v9E0 bl
9,70 9780 6900 €9V0  STE0 9540 1L0°0 ¥8E0 €/T0 7080 1900 9070 7870  19L0 9900 6860 €L
6970 €180 $90°0 6EF0 €00 8EL0  £90°0 92£0 [9T0  $080 $90°0 $6€°0 690  6€L0 €90°0 €ge0 L
970 L£80 890°0 €8y0  7EE0 €500 TL00 ¥8E0 7970 [180 9900 €770 890  LvLO 900 ¥6E0 L
9070 18t 010 8590  95t°0 8EL'L 8600 €750 66€0  69€1 €010 €850 voro  98l'l ¥60°0 850 Ol
€650 L0 860°0 1790  EEV0 60I'L 600 LESO veE0  LSTL 5600 €950 ¥6E0  960°L 0600 LESO 6
26€0 ol £60°0 $990 b0 0SU'L  ¥60°0 6750 6€0  LLEL ¥60°0 8650 Yoro 9Lzl 1600 950 8
9070 6151 660°0 w0  EP0 STl ¥600 8550 800 €0S'L 9600 6570 6070 €8T 2600 8950 L
96€°0 S9€'L €010 Y0L0 6970 L 8600 €550 880 9T 960°0 6090 600 WLl 2600 9950 9
7101 PhOy 9L£0 VTl BELE ars 7170 860 €660  THLE 0LED 6711 5860  ELTE 9970 £80°L S
920'L €LY 5650 2TL eorTL 0669 STTO0 60 [0 L68€ 8550 pLLL 001 609°€ 9970 SL0°L ¥
200°L 66°€ [97°0 Wl 6l6Y 86y L1TO 5160 001 708°€ 98€°0 wl'l 9860  €TEE LEEO 980°L €
S10°1 YOLy 5090 POl 88T 9069  LLTO 5560 00l 885 1190 090'L €60  SI8€ 1050 ¥zo'lL z
6101 LT 9950 gEEL 7819 019S  TLTO S00°L 0L LE6€ 0v50 L6l [00L  [8SE 68470 9€L'L L
ISNY
7100 6010 1000~ €210 SOLO 6000  S800—  ¥LOO-  SZO00 800 0L00- 800 7500 €€0°0 Ly00~ €600 Sl
800°0 9110 €00°0 €00 €800 ST00  9900-  €200-  6l00  £60°0 8000~  ¢L0°0 woo  7s00 LE0O—  S000 Pl
£100 YELD 5000~  L0L'0 8600 €600  0800—  SE00-  ¥200  LLLO 7100~  L€0°0 7500 £90°0 6€00— 6000 €L
¥20'0 1Z10 ¥l00—  [900  ¥80°0 V200 8900—  CC00-  ZE00  SLLO 7200~ 6000 6900 8500 800~  L000 Tl
¥00°0 Pr10 9000 6010 €010 (200 $800—  L¥00—  0L00  €LLO 2000 LEOO 900 8500 SE00— 10O L
7100 ¥92°0 ¥00°0 L600 9710 1600  €600- €000 $200  12T0 6000~ 7200 ¥900 €210 900~  8L00 Ol
¥20'0 7810 €100~ 600  ¥LLO 8600  ¥800—  €000- /OO 6510 9200~ 8100 9900  S60°0 1S00- 9100 6
€00 €610 1200~  SLI0  O€L0 ¥900  8600—  LLOO woo  ¥9L0 LE0O—  $¥0°0 600 9800 €900~  €€0°0 8
9500 1270 9600~  TS00 Tl STI0  1600—  TLOO- /SO0  6LT0 SY00—  9000- 600  €TLO 9900~ 7000 L
200 zL10 €100~ 8510 Lyl €500  SOL0- 6100 700 TTlo 0200- 800 800  £S0°0 1900~ 2S00 9
¥v0'0 1500 880~  8ELD bSO 7080  060- 9800 9900  SL0°0 LU0~ 900 80L'0  T/00-  ¥8LO—  £800 S
Ll00-  SZI'0-  OLE0— 0600  96€'L SOl €6L0-  TS00 8000  ¥Zl'0~  ¥6T0— 8700 6900  Thl'0—  09C0—  9v00 ¥
800°0 7100 9lTO~  9TL0 L9 l6£0 /80—  TLOO 6600  £T00 €610- 7900 [L00  TSO0—  S8LO—  $.0°0 €
0100 00—  LLEO-  1S00  07LT [6l'L  €0TO-  ¥L00 1200 900-  LEE0-  8l00— €500  LELO-  L6CO—  SLOD z
9100 €600~ €70~  LLI0 6890 $8/0  $0TO- 8600 TE00  SELO-  TLTO- 7600 V.00  L6l'0—  ¥8T0—  [800 L
o p > q op p > q op p > q o p > q
paxid pajood sl HO
9y

"€°0 = 0 JIPUN S|9POW JUIBYIP U0 Paseq ISINY pue gy & 3|qe]



QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT 13

[150 9et'L 6110 100 S6L0 9€TL LELO LLS0 7150 gEE'L 9110 790 €50 SLTL SLLO 1190 s
LSO 187’1 8110 190 6890 LEUL Tl LES0 9150 6€TL 9110 950 5050 9Ll LLLO Y50 vl
8750 [Tl 6110 [990  ¥TL0 [Tl STl 9v50 6150 6L 9110 8650 [0S0 Z0TL ELL0 +950 €l
€150 6Tt ELL0 SE90  S€9°0 voTL  LLLO ¥r50 ¥Z50 86€'L €110 $85°0 UY0 YTl 6010 5950 4
9750 [SL L110 0890  £9L0 lZTL 8Tl €€50 8050 69€'L PLLO 6090 6570 LSL'L 5010 0450 L
0€8°0 gee'e ¥61°0 6v60  T6C1 lzz 8910 ¥SL°0 0280 €90°€ ¥81°0 580 vpLO 08T 6510 9080 oL
680 14T 8L10 2060 Tl €977 0910 1SL0 640 8€9T €410 9780 8ELO  SYOT 9510 ¥8L0 6
£080 200°€ 6L1°0 7560 YOl 9cT oL 1SL0 1280 8T V10 980 6VL0 99T 8510 0780 8
9780 8ETE 9810 6160  ¥9EL wor 890 2o 1780 LYTE €81°0 8580 ¥6L0  LYST 910 9780 L
608°0 986 810 0L LT 69T TLLD 9520 16£0 8T 8L10 8880 Lo L9t 9910 8€8°0 9
6LY'L VEry  phO'L 99/l €T108T  [TELL  €8T0 €971 Yor'L 0LEY  ¥T60 809'L €StL 986°€ 8560 5551 S
LSl 6LEY SE0'L 0Tl ESSELS  OLEL  68C0 0T’ [l 867 €10 LS VYL 00 60 8ES'L ¥
L6t'L €26 sl ISCL 898TTE  ELTLL  /8T0 [T vev'L SELY Yo'l L9l verL  Lobd sl 6551 €
Sl LYoy 9¢eT’L 159°L €Ceeo SoT€ElL 620 Lzl 89Y°L 68LY LLT) L1S°L €Sl 809t eLe’L 6L¥'L 4
8L 0zLy 9oLl 868'L  TLLYTE  TTTLL 18O 65T1 86t 0Er'y 8760 801 871 L00V  ¥l60 8E9'L L
ISNY
7800 6910 §S00-  LELD  L6TO o0  L6L0—  9900— 8800 YELD 7900- 1900 €00 6800 7L00- 0500 s
LL0'0 6810 P00~ 100  SETO $900  €910—  1L00- 1800 891°0 €500- 60070 S600  9LL0 ¥900~ 6000 vl
1200 181°0 [S00- 010 €970 €00  8L0— 1600~ 800 6510 €900~  £€0°0 [600 9010 6900~  SZ0'0 €l
¥L0'0 5910 7900- 6900 9170 $500  €S10—  1900— 800 1910 LZOO~ 6000 €00 1010 8500~  SLOD 4
0900 070 Wwo0- 6010  ¥8TO 6900  S6L0—  60L0— 7900 9910 900~ 9500 SL00 1600 VSO0~ €€0°0 L
LLO'O 2620 [600- 8800  66€0 VSTO  STC0-  LE00— /800 ¥vT0 YOL0—  ¥10°0 €00 ELLO €00~  6€0°0 oL
6L0°0 6910 80L'0~ 600  8vED ¥8T0  $0TO—  9500-  ¥60°0 9v1'0 8LI0- 10D 6010 9500 9LI0-  TE00 6
960°0 6910 TIro-  8Tl0 LLED Llgo  v2z0-  9100-  LLLO 510 [LI0- SO0 ¥ZI0  €€00 6LI0— 6900 8
7010 LL1Z0 PO~  S¥00  98E0 8VE0  TLTO-  EE00—  TLLO 0610 Z510-  plO0-  SLLO €00 LEVO-  TLOD L
LL00 Lo Ziro- L0 SO S070  8€T0~  1Z00- 9600 ¥60°0 SLIO- 98070 STI0 4000 VZI0-  €80°0 9
1100 6650~ €70~  8SL0  V/®LT  O6L 90—  VELD €000 LESO—  [990—  L60°0 [900 1850~  0/90—  €0L0 S
6600~  $650—  S8L0— €00  OLSLS LLIET  SLE0— 1800 SI00-  18S0-  €9/0—  SLOD L100  [£90—  0SL0—  9€0°0 ¥
LLO0-  6550—  9€80—  E€LL'0 bS8 €Ll 68€0— 7600 8100 WS0—  68L0—  6Y00 6600  €C90—  SZ80-  SYO0 €
Wo0-  90L0-  €860— €00 ThYLS  SEET  66£0— SO0 8l00~  8/90—  9860—  9€00— 000  99/0-  9Z0'l-  TLO0- z
€100~  90£0—  1980— 610  SLyPE €581  86E0—  SELD 8200 9650~  SLLO~  LOLO €00  9€90—  TTL0~ 6600 L
o p > q op p > q op p > q o p > q
poxi4 pajood sl HO
9y

'G'0 = 0 J3PUN S|9POW JUIBYIP UO Paseq ISINY pue gy °s 3|qe]



14 L. ZHUANG ET AL.

690°1L L9€°€ STT0 0660  LLLLL 7567 8tT0 90 9l0L 86L°€ lZ70 060 8680 17T 9170 €980 Sl
¥60°L SI9€ 8TC0  ¥860  €ST6L 866 1ZC0 Lo 8Ll [ISE  ¥TTo 5760 1260 90§ 6120 €060 ¥l
LY0'L 061°€ 170 [L60  OfEL vZLT 6170 1920 Lb0'L 260°€ LIT0 2060 680 18ET £0T0 €80 €l
660 €8E€ 6070 660 €49 607  ¥0TO Y90 8TO'L 8Tr'e 80C0 6880 €80 81T 8610  8y80 ¢l
€€0'L SLE€ 170 LEOL  SSE9T 9067  SETO €90 8001 LITE LITO 8660 680 LLST 6000  L060 Ll
S6C°L 13784 ele’l 4t G9G°€ET 0¢’S L9T’L 1260 6L (9484 LLLL vLEL vLLUL £€89'¢ 810°L 08C’L oL
9Ll 167 TEVL S6EL  L0688Y  6V0'L LTL SL60  6LEL 8ELY €07'L 6Tl 67T1 978€ 150l €87'L 6
9%6C'1 (86 LsTl €OVl 6LE9LS  S8E9 09Tl $960  60€L €87 7901 8T W'l ¥90y  800'L 9’1 8
6vT1 €LY 960 [SEL 9S6LSL SEL'S  TS60 8960 S9T'L SL0v  £980 €971 811 (8€°€ 980  ¥9TL L
L0T1 L08€ 8980 L6 8809 9Ly T080 €680  8lTL 9/9°€  ¥8L0 €571 LUl pLLE Lo ozl 9
11T ssEY Ll [19T  8v8'€68lL  LL6LL  LEE0  BESL 8TLT  WLTY $80°L L6€T Tz 8LEE L00'L 56T S
6£0C €107 0860 SIYT  678lTC  8Y6TL  8EE0 685l 01T 166°€ €60 teTe loLe $89°€ 8260  6L1T ¥
80L'T S0St b0l S19T  LE9TSIE  SIBEL  YKED 6651 171z 8vy  L0O0'L €IVT 601 85V 6701 YrET €
e6l'c  stev  SLUL 9T L€6'899T  L9¥WL  SYEO €89'1 81T 06Ev 9Vl 8ET  8LLT 196°€ 951l s5€°T z
41%4 soey 7801 ¥8ST  ¥6SS8LL  TOLTL  LYED 151 90T 60EY  660°L €EET 90T socy  well €T L
ISNY
SELO 181°0 [910- 600  997T LLE0  69€0—  ¥6L0—  6TL0 620 89L0—  LLOD 5500 00 1800~ 8600 Sl
90 9510 6LLO—  [b0O  8YET SO0  L[PE0—  SPL'0—  8EL0  ¥ELO €810~  LI00-  £S00 2100 ZEL0- 00 bl
IS0 9210 9910~  9LI0 871 €670  ESE0—  [S10— €910 W0 6910—  6v00 900 €100 [800-  LL00 €L
90 ¥SL0 TLU0- 1900 8LOL 6870  E€LE0~  LTL0— €910 0910 610~  T000  ¥S0°0 5100 9900~ 900 2l
YELD LEL0  ¥8L0~  €0L0  8EOE €90  ¥OPO—  SLTO~  TwlO [110 €810~ 6200 €00  6y00  90L0— €500 Ll
7500 O0LE0—  LI80— [Tl [6S€T VELO  LLWO-  9900— /00 96T0—  LZL0-  SS0°0 1200 SIF0-  8950— L6000 Ol
1900 L0E0—  9580— 6900  L66VS lZTL  TTho—  S900— 8800 7970~ 80~ 6000 SO0 l9€0~ 7790~ LS00 6
9900  6LL0—  9¥L0— €900  6¥8°0S 9Ll 6LYO—  STLO- 9600 8900—  SE90~  9000-  6Y00  86L0—  ¥0SO-  $T00 8
880°0 SETO-  L6S50-  TIL0  9E6vL $590  SLE0- €000 Lo €70~  1SS0— 6500 2L0°0 S6T0—  bSY0— SOl L
VW00 ¥STO0-  ¥IS0- 910 ¥ET9 7850  €Z¥0—  S600— 8900 LbTO~  S9r0— 8800 SO0 9600—  99€0-  LOL'O 9
€000~  9660—  0960—  SLL'O  LE6'S8L  T9LL  €950—  L6L0 LECO 8560~ 8760~  00L'0 €00 L660— €160~  L600 S
7100 6960—  [860—  HOL'O  €2LS0C 861 SLSO—  S6L0 500 8260— 60—  LY00 8500 20— 860~ 6900 ¥
9900~  €00'l— 060 /SO0  TLEE0E  SOLT 1850~  tbl0 /00~  T660-  9560—  L000—  9200—  LEOL—  8S60—  SLOO €
6100—  9S0'l— 980l  ¥/00  [98THT LLI'T  S8S0— 12T 7100~ €0l- STl 6100 LL00  690L—  TSOL— €400 z
ST00-  €660-  T00l—  LELO  Lb/v6l 9S8  8950— SO0 8000~  €860—  [860—  $/00  9L00 l00L—  ZLOL— 6500 L
o p > q op p > q o p > q o p > q
paxid pajood 5L HO
ay

"8°0 = 0 "J3pUN SPOYISW JUIIYIP UO paseq ISIY pue gy ‘9 3|qel



QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT . 15

From Tables 3-6, we can get some clear conclusions.

(1) For the case without group effects (0 = 0), the RBs and RMSEs based on all the three models
are close to each other, although the true model is the pooled model. Such a result indicates
that when the model is misspecified, the proposed model can still fit the data well, and
provides reasonable estimates of the model parameters. For estimating the characteristic
lifetime ay, the RMSEs based on the proposed model are almost the same as these based on
the true model, while the fixed model performs the worst among the three models in this case.

(2) For the data with group effects (6 = 0.3,0.5,0.8), the proposed model can capture group
effects in the data, and the RBs and RMSEs of estimates for the model parameters vary
slightly. As a comparison, the RBs and RMSEs based on the pooled model increase
significantly as o increases. Specially, when estimating the characteristic lifetime ao, neglect-
ing group effects will lead to large biases and variations. Compared with other two models,
the performance of the fixed model is a compromise. The RBs and RMSEs based on the fixed
model are slightly worse than these based on the proposed model, but much better than
these based on the pooled model.

(3) For the GH and TS methods, as we can see from Tables 3-6, regardless of the magnitude of
o0, the RBs and RMSEs based on the GH method are almost smaller than the corresponding
results based on the TS method. This result is not surprising, because the estimates based on
the GH method are the ML estimates, which could have higher efficiency than the TS
estimates.

For visualizing these results much better, a box plot is drawn to show the performance of the
three models. Figure 3 shows all the point estimates of } based on the three models under the sixth
progressive censoring scheme listed in Table 2. The horizontal dashed line in each figure represents
the true value, and the red solid point represents the average value of 800 point estimates. For
estimating the characteristic lifetime ay, the GH method based on the proposed model leads to the
smallest RMSEs under all the scenarios.

5. Case study

In this section, we will reanalyze the PSALT data of insulating oils listed in Table 1. The lifetime data
of the specimens at each group can be obtained through the breakdown voltage divided by the stress
rate v;. As suggested by (Nelson, 2009), we assume the lifetime of each unit follows the Weibull
distribution and the relationship between scale parameter and stress satisfies the inverse power law.
According to the Kolmogorov-Smirnov test, we find that the test p-value is greater than 0.05, which
suggests accepting the null hypothesis: the lifetime data follow a Weibull distribution.

Firstly, three models (the proposed model, pooled model and fixed model) are used to fit the
data. The Akaike Information Criterion (AIC) is utilized to select the best model among the three
candidates. The results of the parameter estimates and AIC values for different models are listed in
Table 7. As can be seen, the AIC values of the proposed model using GH and TS methods are much
smaller, which indicates that the propose model fits the data best. The 90% interval estimates of the
model parameters are obtained by bootstrap approach, which are shown in Figure 4. From Figure 4,
we can see that the lower bound of the 90% interval estimates of o based on GH is significantly
larger than 0.1, which also implies that group-to-group variation exists in the dataset. Figure 5
shows the residuals based on different models. It can be seen that for the proposed model, the
residuals for each group are significantly reduced, and they are well balanced among the groups.
The sum of squared residuals obtained by GH and TS are 0.216 and 0.212, respectively, which are
much lower than the results based on other two models (Pooled: 0.315 and Fixed: 0.311). In
addition, we use KW test to verify whether the residual values of each group based on the proposed
model are significantly different, and the p-values of the KW test for GH and TS are 0.1729 and
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Figure 3. Box plots of point estimates under different 0. The horizontal dash line of each plot denote the true parameter values
and the red solid points represent the average value of point estimates.

0.1101, respectively, which are greater than the significance level 0.05. While for the pooled model
and the fixed model, the p-values of the KW test are 2.272 x 1076 and 1.636 x 1078, respectively,
which means that the heterogeneity still exists among groups. Thus, the proposed model can
capture the group effects, and fit the data sufficiently.

When the model has been determined, the estimate of the characteristic lifetime gy with normal
used condition sy = 30V can be obtained. As listed in Table 7, the estimates of gy based on the
pooled and fixed model are 100.698 and 76.981, respectively, while the estimates based on GH and
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Table 7. Model comparison for PSALT data.

Estimates
AIC b log(2) d o ao
GH —523.739 0.772 —53.784 14.800 0.206 96.562
TS —543.125 0.772 —54.054 14.818 0.211 94.777
Pooled —459.823 0.771 —54.307 14.890 - 100.698
Fixed —473.297 0.778 —52.262 14352 - 76.981
0.90 2001
04 T
16
0.85 50
03 150
0.80 15
54
0.2
0.75 1004
14
58
0.1
0.70
504
13 1
GH TS Pooled Fixed GH TS Pooled Fixed GH TS Pooled Fixed GH Ts GH TS Pooled Fixed
: 0a®) j b b

Figure 4. Point estimates (dots) and 90% interval estimates (corresponding lines) for different models.

TS are, respectively, 96.562 and 94.777. As shown in the simulation study, when the group effects
exist, the estimate bias is not ignorable for the pooled and fixed models. The AIC and residual
analysis have indicated the existence of the group effects. Thus, the estimates of ay obtained by GH
and TS may be more reasonable.

6. Conclusion and discussion

In this article, we have proposed a new model for PSALT data under progressive censoring with
group effects. From a practical point of view, the model can not only consider the heterogeneity
among groups, but also provide a flexible censoring scheme for engineers. To infer the point and
interval estimation of the model parameters, GH and TS methods are developed. Both approaches
are effective to obtain the estimates when the model has group effects. In the simulation studies, we
compare the proposed model with other two alternatives, and find that the proposed model can fit
the data well whether the data have group effects or not, and also can provide reasonable estimates
of the characteristic lifetime. For analyzing the PSALT data of of insulating oils, we find that the
heterogeneity is significant among groups, and the proposed model can fit the data well.

The aim of performing PSALT is to predict the characteristic lifetime under the normal used
condition, which will directly reflect the reliability of product and affect the formulation of
warranty strategy. Therefore, engineers should carefully check the possible group structure of
an experiment and incorporate this group effect into their model. (Seo & Pan, 2017) recom-
mended that when analyzing the lifetime data collected by ALT, both the traditional model and
the model with group effects can be used for fitting data, then choose a better model based on the
results or certain criterion. While, in our simulation, we found that the proposed model performs
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similarly to the pooled model when the group effects do not exist in the data. Thus, an alternative
suggestion is that the PSALT data can be analyzed using the proposed models regardless of
whether the experiment contains group or cluster structure caused by different raw materials or
different test stands, and then judge the existence of group effects according to variance compo-
nent or performing residual analysis. For engineers, this is a faster and more convenient way to
operate the process. However, the model has a drawback, for example, when the group effect is
large and the number of groups is small, the performance of the proposed model will be limited.
One strategy is to utilize Bayesian methods to analyze the data based on the proposed model. An
alternative approach may be using the field data to jointly infer product characteristics under
normal used condition (Pan, 2009).

Acknowledgments

The research is supported by Natural Science Foundation of China under grant number 12171432, Zhejiang Xinmiao
Talents Program under grant number 2021R429049 and the characteristic & preponderant discipline of key
construction universities in Zhejiang province (Zhejiang Gongshang University-Statistics), and Collaborative
Innovation Center of Statistical Data Engineering Technology & Application.

Disclosure statement

No potential conflict of interest was reported by the author(s).



QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT . 19

Funding

The work was supported by the Natural Science Foundation of China [12171432]; the characteristic & preponderant
discipline of key construction universities in Zhejiang province [Zhejiang Gongshang University-Statistics];
Collaborative Innovation Center of Statistical Data Engineering Technology & Application. [Zhejiang Gongshang
University]; Zhejiang Xinmiao Talents Program [2021R429049].

Notes on contributors

Liangliang Zhuang is currently pursuing the Ph.D. degree in Statistics with the school of Statistics and Mathematics,
Zhejiang Gongshang University. His research interests include degradation modeling and machine learning in
reliability engineering.

Ancha Xu is a Professor in the School of Statistics and Mathematics at Zhejiang Gongshang University. He received
the PhD degree in Statistics from East China Normal University. His current research interests include Bayesian
online inference, degradation models, and lifetime data analysis. His articles have appeared in IEEE Transactions on
Reliability, Computational Statistics & Data Analysis,Journal of Statistical Planning and Inference, and other
technical journals.

Binbing Wang is currently pursuing a MS degree in the the School of Statistics and Mathematics at Zhejiang
Gongshang University. His main research interests are reliability modeling and Statistical computation.

Yuguo Xue is currently pursuing a MS degree in the the School of Statistics and Mathematics at Zhejiang Gongshang
University. His main research interests are reliability modeling and Statistical computation.

Songzi Zhang is currently pursuing a MS degree in the the School of Statistics and Mathematics at Zhejiang
Gongshang University. Her main research interests are reliability modeling and Statistical computation.

ORCID

Ancha Xu (o) http://orcid.org/0000-0003-3289-2720

References

Abdel-Hamid, A. H., & Al-Hussaini, E. K. (2011). Inference for a progressive stress model from Weibull distribution
under progressive type-II censoring. Journal of Computational and Applied Mathematics, 235(17), 5259-5271.
https://doi.org/10.1016/j.cam.2011.05.035

Balakrishnan, N., & Aggarwala, R. (2000). Progressive censoring: Theory, methods, and applications. Springer Science
& Business Media.

Bera, S., & Jana, N. (2022). Estimating reliability parameters for inverse Gaussian distributions under complete and
progressively type-II censored samples. Quality Technology & Quantitative Management, 1-26. https://doi.org/10.
1080/16843703.2022.2109871

Chan, C. K. (1990). A proportional hazards approach to correlate SiO2-breakdown voltage and time distributions.
IEEE Transactions on Reliability, 39(2), 147-150. https://doi.org/10.1109/24.55873

Chen, P., Xu, A, & Ye, Z. -S. (2016). Generalized fiducial inference for accelerated life tests with Weibull distribution
and progressively type-II censoring. IEEE Transactions on Reliability, 65(4), 1737-1744. https://doi.org/10.1109/
TR.2016.2604298

Cheng, Y., & Elsayed, E. A. (2017). Reliability modeling of mixtures of one-shot units under thermal cyclic stresses.
Reliability Engineering ¢ System Safety, 167, 58-66. https://doi.org/10.1016/j.ress.2017.05.018

Cohen, A. C. (1963). Progressively censored samples in life testing. Technometrics, 5(3), 327-339. https://doi.org/10.
1080/00401706.1963.10490102

Feiveson, A. H., & Kulkarni, P. M. (2000). Reliability of space-shuttle pressure vessels with random batch effects.
Technometrics, 42(4), 332-344. https://doi.org/10.1080/00401706.2000.10485706

Freeman, L., & Vining, G. (2010). Reliability data analysis for life test experiments with subsampling. Journal of
Quality Technology, 42(3), 233-241. https://doi.org/10.1080/00224065.2010.11917821

Gerville-Reache, L., & Nikulin, M. (2007). Some recent results on accelerated failure time models with time-varying
stresses. Quality Technology & Quantitative Management, 4(1), 143-155. https://doi.org/10.1080/16843703.2007.
11673140

Herd, G. R. (1956). Estimation of the parameters of a population from a multi-censored sample. Iowa State University.


https://doi.org/10.1016/j.cam.2011.05.035
https://doi.org/10.1080/16843703.2022.2109871
https://doi.org/10.1080/16843703.2022.2109871
https://doi.org/10.1109/24.55873
https://doi.org/10.1109/TR.2016.2604298
https://doi.org/10.1109/TR.2016.2604298
https://doi.org/10.1016/j.ress.2017.05.018
https://doi.org/10.1080/00401706.1963.10490102
https://doi.org/10.1080/00401706.1963.10490102
https://doi.org/10.1080/00401706.2000.10485706
https://doi.org/10.1080/00224065.2010.11917821
https://doi.org/10.1080/16843703.2007.11673140
https://doi.org/10.1080/16843703.2007.11673140

20 L. ZHUANG ET AL.

Kensler, J., Freeman, L. ], & Vining, G. (2014). A practitioner’s guide to analyzing reliability experiments with
random blocks and subsampling. Quality Engineering, 26(3), 359-369. https://doi.org/10.1080/08982112.2014.
887101

Kim, S. -H., & Sung, S. -I. (2022). Optimal design of cyclic-stress accelerated life tests for lognormal lifetime
distribution. Quality Technology & Quantitative Management, 1-20. https://doi.org/10.1080/16843703.2022.
2093577

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American
Statistical Association, 47(260), 583-621. https://doi.org/10.1080/01621459.1952.10483441

Kumar Mahto, A., Dey, S., & Mani Tripathi, Y. (2020). Statistical inference on progressive-stress accelerated life
testing for the logistic exponential distribution under progressive type-II censoring. Quality and Reliability
Engineering International, 36(1), 112-124. https://doi.org/10.1002/qre.2562

Ledn, R. V., Li, Y., Guess, F. M., & Sawhney, R. S. (2009). Effect of not having homogeneous test units in accelerated
life tests. Journal of Quality Technology, 41(3), 241-246. https://doi.org/10.1080/00224065.2009.11917779

Lin, Z., & Fei, H. (1991). A nonparametric approach to progressive stress accelerated life testing. IEEE Transactions
on Reliability, 40(2), 173-176. https://doi.org/10.1109/24.87123

Liu, Q., & Pierce, D. A. (1994). A note on gauss-hermite quadrature. Biometrika, 81(3), 624-629. https://doi.org/10.
1093/biomet/81.3.624

Lv, S, He, Z., & Vining, G. (2017). Simultaneous optimization of quality and reliability characteristics through
designed experiment. Quality Engineering, 29(3), 344-357. https://doi.org/10.1080/08982112.2017.1294696

Lv, S., Wang, Z.,, He, Z., & Vining, G. (2019). Impact of censoring types on the two-stage method for analyzing
reliability experiments with random effects. Quality Engineering, 31(2), 302-313. https://doi.org/10.1080/
08982112.2018.1513528

Mahto, A. K., Lodhi, C., Tripathi, Y. M., & Wang, L. (2022). On partially observed competing risk model under
generalized progressive hybrid censoring for lomax distribution. Quality Technology & Quantitative Management,
19(5), 562-586. https://doi.org/10.1080/16843703.2022.2049507

Meeker, W. Q., & Escobar, L. A. (1998). Statistical methods for reliability data. John Wiley & Sons.

Mohie El-Din, M., Abu-Youssef, S., Ali, N. S, & Abd El-Raheem, A. (2017). Classical and bayesian inference on
progressive-stress accelerated life testing for the extension of the exponential distribution under progressive
type-II censoring. Quality and Reliability Engineering International, 33(8), 2483-2496. https://doi.org/10.1002/
qre.2212

Montanari, G. C., & Cacciari, M. (1988). Progressively-censored aging tests on XLPE-insulated cable models. IEEE
Transactions on Electrical Insulation, 23(3), 365-372. https://doi.org/10.1109/14.2376

Nelson, W. B. (2009). Accelerated testing: Statistical models, test plans, and data analysis. John Wiley & Sons.

Palayangoda, L. K., & Ng, H. K. T. (2021). Semiparametric and nonparametric evaluation of first-passage distribution
of bivariate degradation processes. Reliability Engineering & System Safety, 205, 107230. https://doi.org/10.1016/j.
ress.2020.107230

Pan, R. (2009). A bayes approach to reliability prediction utilizing data from accelerated life tests and field failure
observations. Quality and Reliability Engineering International, 25(2), 229-240. https://doi.org/10.1002/qre.964

Prot, E. (1948). L'essai de fatigue sous charge progressive. Une nouvelle technique d’essai des matériaux. Revue de
Meétallurgie, 14(12), 481-489. https://doi.org/10.1051/metal/194845120481

Rao, C. R. (1965). Linear Statistical Inference and its Applications (2nd ed.). Wiley.

Seo, K., & Pan, R. (2017). Data analysis of step-stress accelerated life tests with heterogeneous group effects. IISE
Transactions, 49(9), 885-898. https://doi.org/10.1080/24725854.2017.1312038

Singh, D. P., Jha, M. K,, Tripathi, Y., & Wang, L. (2022). Reliability estimation in a multicomponent stress-strength
model for unit Burr III distribution under progressive censoring. Quality Technology & Quantitative Management,
19(5), 605-632. https://doi.org/10.1080/16843703.2022.2049508

Solomon, P., Klein, N., & Albert, M. (1976). A statistical model for step and ramp voltage breakdown tests in thin
insulators. Thin Solid Films, 35(3), 321-326. https://doi.org/10.1016/0040-6090(76)90198-X

Starr, W., & Endicolt, H. (1961). Progressive stress—a new accelerated approach to voltage endurance, transactions of
the American institute of electrical engineers. part IIl. Power Apparatus and Systems, 80(3), 515-522. https://doi.
org/10.1109/AIEEPAS.1961.4501081

Wang, J. 2020. Data analysis of step-stress accelerated life test with random group effects under Weibull distribution.
Mathematical Problems in Engineering, 20203, 1-11. https://doi.org/10.1155/2020/4898123

Wang, G., Niu, Z,, Lv, S., Qu, L., & He, Z. (2016). Bootstrapping analysis of lifetime data with subsampling. Quality
and Reliability Engineering International, 32(5), 1945-1953. https://doi.org/10.1002/qre.1925

Wang, G., Shao, L., Chen, H., Cui, Q., & Lv, S. (2019). Calculating confidence intervals for percentiles of accelerated
life tests with subsampling. Quality Technology & Quantitative Management, 16(4), 424-438. https://doi.org/10.
1080/16843703.2018.1448693

Wang, B. X,, Yu, K., & Sheng, Z. (2014). New inference for constant-stress accelerated life tests with Weibull
distribution and progressively type-II censoring. IEEE Transactions on Reliability, 63(3), 807-815. https://doi.
org/10.1109/TR.2014.2313804


https://doi.org/10.1080/08982112.2014.887101
https://doi.org/10.1080/08982112.2014.887101
https://doi.org/10.1080/16843703.2022.2093577
https://doi.org/10.1080/16843703.2022.2093577
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1002/qre.2562
https://doi.org/10.1080/00224065.2009.11917779
https://doi.org/10.1109/24.87123
https://doi.org/10.1093/biomet/81.3.624
https://doi.org/10.1093/biomet/81.3.624
https://doi.org/10.1080/08982112.2017.1294696
https://doi.org/10.1080/08982112.2018.1513528
https://doi.org/10.1080/08982112.2018.1513528
https://doi.org/10.1080/16843703.2022.2049507
https://doi.org/10.1002/qre.2212
https://doi.org/10.1002/qre.2212
https://doi.org/10.1109/14.2376
https://doi.org/10.1016/j.ress.2020.107230
https://doi.org/10.1016/j.ress.2020.107230
https://doi.org/10.1002/qre.964
https://doi.org/10.1051/metal/194845120481
https://doi.org/10.1080/24725854.2017.1312038
https://doi.org/10.1080/16843703.2022.2049508
https://doi.org/10.1016/0040-6090(76)90198-X
https://doi.org/10.1109/AIEEPAS.1961.4501081
https://doi.org/10.1109/AIEEPAS.1961.4501081
https://doi.org/10.1155/2020/4898123
https://doi.org/10.1002/qre.1925
https://doi.org/10.1080/16843703.2018.1448693
https://doi.org/10.1080/16843703.2018.1448693
https://doi.org/10.1109/TR.2014.2313804
https://doi.org/10.1109/TR.2014.2313804

QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT . 21

Yin, X., & Sheng, B. (1987). Some aspects of accelerated life testing by progressive stress. IEEE Transactions on
Reliability, 36(1), 150-155. https://doi.org/10.1109/TR.1987.5222320

Zhang, L., Xu, A., An, L., & Li, M. (2022). Bayesian inference of system reliability for multicomponent stress-strength
model under Marshall-Olkin Weibull distribution. Systems, 10(6), 196. https://doi.org/10.3390/systems10060196

Zheng, R., & Ellingwood, B. R. (1998). Stochastic fatigue crack growth in steel structures subject to random loading.
Structural Safety, 20(4), 303-323. https://doi.org/10.1016/S0167-4730(98)00020-4

Zhu, X., Liu, K., He, M., & Balakrishnan, N. (2021). Reliability estimation for one-shot devices under cyclic
accelerated life-testing. Reliability Engineering & System Safety, 212, 107595. https://doi.org/10.1016/j.ress.2021.
107595

Zhuang, L., Xu, A., & Pang, J. (2021). Product reliability analysis based on heavily censored interval data with batch
effects. Reliability Engineering & System Safety, 212, 107622. https://doi.org/10.1016/j.ress.2021.107622

Appendix

Based on Eq. (10), let Y;; = (tij/oc,ﬂ))L, and f(A) be a function of A:

M 1 k  m;
) *T 1 ZZlogY,, ZZRU+1Yu10ngJ,

i=1 j=

where M = ZLI m; is the number of all failure units. Based on our assumption that ¢; follows Weibull distribution,
it can be obtained that Y;~exp(l). According to the law of large numbers, it can be known that

Z ZlogY — M-E(log Yy), and Y L 2 (R +1)Ylog Yy — N - E(Yylog Yy), where N = % mi. Thus,
i=1j=1
the following results can be obtained: as N — oo,

fQ) — w with probability 1,

00
where y=1 +J In(x)e *dx, and 1 —y is Euler’s constant greater than 0. When A tends to 0%, we have
0

limy_+ f(A) = +00. When A tends to positive infinity, we have limy_, f(1)<0. In addition, f(1) is
a continuous function. Thus, there is an intersection of f(1) and 0 with probability one.
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