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A B S T R A C T

In many industries including engineering, biology, and medical science, etc, interval failure data commonly
exist. Utilizing the data to estimate product lifetime is often confounded with both heavy censoring and batch
effects. To deal with the two characteristics, in this paper, we propose a novel two-stage method called
fractional-random-weight bootstrap to help make interval estimation for both model parameters and future
failure numbers. By carrying out various simulation studies, our method demonstrates the superiority over
two other commonly-used bootstrap methods in terms of the relative bias, root mean squared error, and width
of confidence intervals. When extremely heavy censoring is present, the advantage is more significant. In
addition, we illustrate the application of the proposed methodology using a real dataset from experiments on
printed circuit boards. By comparison, we show that misconsidering the batch effects in the interval data could
lead to inaccurate predicted number of failures.
1. Introduction

1.1. Motivation

Product reliability is a common concern to many manufacturers.
To assess the reliability, failure time data that originate from either
laboratory life tests or field experiments are often collected. Depend-
ing on the type of a life test or experiment, various data formats
including complete data, censored data, and interval failure data are
available. Among them, the interval failure data is commonly seen in
many practice. For example, in life tests, practitioners usually perform
periodic, say monthly or bi-monthly inspections on sample test units.
As a result, the time window of an event of failure instead of the exact
failure time is recorded. However, utilizing the interval failure data
to make reliability prediction is faced with two difficulties — heavy
censoring and batch effects. Censoring happens when the duration of
an experiment is less than the typical lifetime of a test unit so that
this test unit is still alive when the experiment terminates. If highly-
reliable products are tested, a number of test units would not fail until
the end of a life test, which results in the case of heavy censoring.
On the other hand, due to the variations in raw materials, units that
are produced in the same batch behave consistently in terms of failure
mechanism. On the contrary, those manufactured in different batches
may behave diversely. If assigning different batches of test units to
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various test groups, the batch effects should be considered as they
impact the following failure analysis.

To motivate our study, we provide a real dataset from life tests
on a certain type of printed circuit board (PCB). The data comprises
eight batches or groups, each containing 2000 products. These PCBs
are tested in a chamber to guarantee that the testing environment are
the same. Due to the complexity of the product testing procedures,
engineers observe the lifetime of PCB at a fixed time every week for
a total of 10 weeks, and the data are listed in Table 1. Unlike in
conventional tests, the data type corresponds to the interval-censored
data. Although there are 2000 units tested in each group, the data are
heavily censored. Specifically, in groups 5–8, the cumulative failure
numbers of products account for less than 2% of the total number
in each group. As an illustration, assume that the lifetime of PBC in
each batch independently follows Weibull distribution, we estimate the
model parameters of each batch that are represented in Table 2. It can
been seen that scale parameters among batches disperse widely, which
implies that the batch effects may exist in the dataset. According to the
observed patterns in the data, three problems need to be concerned
by the manufacturer: (1) How to construct a model for the heavily
censored interval data with batch effects (also called block effects in
reliability area)? (2) How to obtain the point and interval estimates of
the model parameters? (3) How to predict the number of failures in a
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Table 1
Interval failure data of PCB.

Batches 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Censored

1 0 2 4 10 19 21 39 65 71 99 1670
2 0 3 6 4 23 30 44 54 64 81 1691
3 0 2 4 7 5 13 14 17 28 28 1882
4 0 0 2 2 4 8 9 13 13 16 1933
5 0 0 0 0 3 1 2 6 4 4 1980
6 0 1 0 0 0 3 2 4 5 6 1979
7 0 0 0 2 1 0 3 2 3 3 1986
8 0 0 0 0 2 2 0 1 2 2 1991

Table 2
Parameter estimation of each batch when Weibull distribution is assumed.

Parameters Batches

1 2 3 4 5 6 7 8

Scale 16.311 17.640 28.602 31.901 43.893 42.661 65.461 66.013
Shape 3.503 3.144 2.665 2.913 3.111 3.137 2.638 2.848

certain future period? The former two problems are the basis for solving
the third problem, while the third problem is related with inventory
control. Accurate prediction will help reduce the inventory costs, and
thus is very important for the manufacturer.

1.2. Related literature

Conventional reliability analysis are commonly based on the as-
sumption that the data are from a completely random designed exper-
iment [1]. However, when some external effects are considered, such
as random effects, subsampling effects, block effects, etc., the data may
be not completely randomized anymore. Feiveson and Kulkarni [2],
Leon et al. [3] and Lv et al. [4] have emphasized the importance of
incorporating the effect of subsampling into the analysis of lifetime
data.

Freeman and Vining [5] proposed a two-stage method to ana-
lyze accelerated life test (ALT) data with the effect of subsampling.
The method can be easily implemented by using common statistical
softwares (for example, Minitab or JMP). However, Vining et al. [6]
indicated that the two-stage method was prone to bring biases in
the estimation of shape parameters when the Weibull distribution
was assumed. Furthermore, the confidence intervals (CIs) of percentile
lifetimes cannot be computed based on the two-stage method. Zhang
et al. [7] proposed a bias reduction method for the estimation of
Weibull shape parameters with complete and censored data. Wang
et al. [8] developed a two-stage bootstrap method based on an unbiased
factor approach. This method included the resampling and subsampling
steps, thereby facilitating the computation of CIs. Wang et al. [9]
constructed a model interconnecting percentiles and stress factors to
derive the likelihood-based (LB) inference on percentile lifetimes, and
the simulation showed that the results obtained by [9] were better than
those reported by [8]’s. Kensler et al. [10] compared the two-stage
method with conventional analysis concerning an experiment with both
subsampling and block effects. Wang et al. [11] proposed a bootstrap
analysis of designed experiments for reliability improvement with a
non-constant scale parameter. Lv et al. [12] compared the performance
of the two-stage approach for right-censored data.

In addition to the two-stage method, the nonlinear mixed-model
(NLMM) can be considered as the other approach to address subsam-
pling. It was first proposed by Freeman and Vining [13], and extended
by [14–18]. Specifically, Lv et al. [14] extended the NLMM method to
incorporate the effects of both subsampling and non-constant shape pa-
rameters. Kensler et al. [15] adjusted the NLMM method to conduct the
experiments with random blocks and subsampling. Seo and Pan [16]
proposed a generalized linear mixed model (GLMM) to analyze the
ALT data obtained from the experiments with constrained randomiza-
tion. Seo and Pan [17] modified the GLMM approach to incorporate
2
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random effects in step-stress ALT. Medlin et al. [18] developed a
NLMM for a split-plot reliability experiment with subsampling and
right-censored lifetime data. Recently, Zhu [19] developed a hierarchi-
cal model for estimating reliability performances under the assumption
that the lifetimes of units are Weibull distributed with block effects.

The aforementioned studies mainly correspond to the analysis of the
complete or right-censored data with batch effects in reliability exper-
iments. However, interval censoring has become increasingly common
in the areas producing the failure time data. Lindsay and Ryan [20]
provided a tutorial on statistical methods for the interval-censored data.
Tan [21] studied the interval data problem for the Weibull distribution.
Peng et al. [22] proposed a new method to evaluate and predict the
dynamic reliability of a repairable system subject to interval-censored
problem. García-Mora et al. [23] used a generalized non-linear model
for interval-censored data to handle the service life of the pipeline from
installation to failure. Sun [24] gave a comprehensive introduction of
the methods for analyzing interval failure data.

In the reliability data analysis, the focus is generally emphasized
on parameter estimates and corresponding CIs. The original methods
based on the right-censored data are usually applicable to the interval
data. However, for the interval data with heavily censored and batch
effects, these methods will lead to unsatisfactory CIs as shown in the
simulation studies of this paper. The contributions of this paper have
two aspects. Firstly, to the best of our knowledge, reliability analysis
based on heavily censored interval data with batch effects has been not
well studied yet. Secondly, a novel two-stage fractional-random-weight
(FRW) bootstrap method is proposed to construct the CIs of the model
parameters. To evaluate the performance of the proposed method, we
compare it with two alternative approaches via simulation studies.

1.3. Overview

This paper is organized as follows. In Section 2, we discuss the
assumptions about the proposed model. Then, a new procedure for
the two-stage method is presented in Section 3. The results of the
simulation studies are reported to compare the performance of the
proposed method with the other considered two-stage approaches in
Section 4. A real dataset is analyzed with illustrative purposes in
Section 5. Finally, we present conclusions and discussions for future
work in Section 6.

2. Model

In the present study, we consider an experiment involving 𝑘 batches
so that each of them contains 𝑛𝑖 units. The measurement times are fixed
as follows: 𝑡𝑖0 < 𝑡𝑖1 < 𝑡𝑖2 < ⋯ < 𝑡𝑖𝑑𝑖 , where 𝑡𝑖0 is the initial time, and 𝑡𝑖𝑑𝑖
is the censored time for the 𝑖th batch. We assume that 𝑡𝑖0 = 0, 𝑡𝑖𝑑𝑖+1 = ∞,
and 𝑚𝑖𝑗 is the number of failures in

(

𝑡𝑖𝑗−1, 𝑡𝑖𝑗
]

, 𝑖 = 1,… , 𝑘, 𝑗 = 1,… , 𝑑𝑖.
𝑚𝑖𝑑𝑖+1 = 𝑛𝑖 −

∑𝑑𝑖
𝑖=1 𝑚𝑖𝑗 is the number of products that have not failed

when the experiment is terminated. Denote that the observed data
 = {

((

𝑡𝑖𝑗−1, 𝑡𝑖𝑗
]

, 𝑚𝑖𝑗
)

, 𝑖 = 1,… , 𝑘, 𝑗 = 1,… , 𝑑𝑖 + 1} (see Fig. 1).
Let 𝑇𝑖 be the lifetime of the product in the 𝑖th batch, and assume

that 𝑇𝑖 follows a distribution in the log-location-scale family. Then
the cumulative distribution function (CDF) and the probability density
function (PDF) of 𝑇𝑖 are formulated as:

𝐹
(

𝑡;𝝎𝑖
)

= 𝛷
[ log(𝑡𝑖𝑗 ) − 𝜇𝑖

𝜎𝑖

]

and 𝑓
(

𝑡;𝝎𝑖
)

= 1
𝜎𝑖𝑡𝑖𝑗

𝜙
[ log(𝑡𝑖𝑗 ) − 𝜇𝑖

𝜎𝑖

]

, (1)

where 𝛷 and 𝜙 are the standard CDF and PDF corresponding to the
location-scale family of distributions, respectively. Here, 𝝎𝑖 = (𝜇𝑖, 𝜎𝑖)′,

here −∞ < 𝜇𝑖 < ∞ and 𝜎𝑖 > 0 are the location and scale parameters,
espectively. The log-location-scale family contains some commonly
sed distributions, such as exponential, Weibull and lognormal dis-
ribution. For the Weibull and lognormal distribution, 𝛷 equals 𝛷sev
nd 𝛷 , respectively, where 𝛷 (𝑧) = 1 − exp[− exp(𝑧)] and 𝛷 are
𝑛𝑜𝑟 sev 𝑛𝑜𝑟
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Fig. 1. The observed interval failure data for the 𝑖th batch.
the CDFs of the standard smallest extreme value distribution and the
standard normal distribution, respectively.

Under the assumption (1), the probabilities that the unit will fail in
the interval time

(

𝑡𝑖𝑗−1, 𝑡𝑖𝑗
]

, 𝑗 = 1,… , 𝑑𝑖 + 1, can be formulated as

𝜆(𝑡𝑖𝑗 ;𝝎𝑖) = 𝐹
(

𝑡𝑖𝑗 ;𝝎𝑖
)

− 𝐹
(

𝑡𝑖𝑗−1;𝝎𝑖
)

, 𝑗 = 1,… , 𝑑𝑖 + 1,

where 𝐹
(

𝑡𝑖𝑑𝑖+1;𝝎𝑖

)

= 𝐹
(

∞;𝝎𝑖
)

= 1. We assume that batch effects are
related with the location parameter 𝜇𝑖 through a log linear function
given by

log𝜇𝑖 = 𝜂 + 𝜀𝑖, 𝑖 = 1, 2,… , 𝑘, (2)

where 𝜂 is unknown parameter and 𝜀𝑖 ∼ 𝑁(0, 𝛿2). In summary, the
assumptions used in this article can be specified as below:

1. The lifetime 𝑇𝑖 follows a log-location-scale distribution.
2. The failure mechanism for different batches is the same, namely,

𝜎𝑖 is constant for all batches. For convenience, we define 𝜎1 =
⋯ = 𝜎𝑘 = 𝜎. Then the impact of batch effects is only addressed
through the location parameters (𝜇1, 𝜇2,… , 𝜇𝑘).

3. Given the location parameters, the units among different batches
are considered as independent.

3. The proposed methodology

Two-stage methods are widely used in analyzing the failure data
with batch effects [5,8,9]. The two-stage method proposed by [5] is
easily implemented and can be extended to deal with interval failure
data. Except for this extension, a new two-stage method combined with
fractional-random-weight (FRW) bootstrap is also proposed to analyze
the interval data with batch effects.

3.1. Two-stage methods

The direct two-stage approach proposed by [5] can be applied to
analyze the interval failure data with batch effects, and the procedure
can be summarized as follows:

1. The first stage is devoted to obtain the estimate �̂� of 𝜽 using
the maximum likelihood (ML) method, where 𝜽 = (𝜎, 𝜇1,… , 𝜇𝑘).
Thus, 𝜇𝑖s are treated as fixed unknown parameters. Given the
observed data , the log-likelihood function can be formulated
as follows:

𝓁 (𝜽) =
𝑘
∑

𝑖=1

𝑑𝑖+1
∑

𝑗=1
𝑚𝑖𝑗 log

{

𝛷
[ log(𝑡𝑖𝑗 ) − 𝜇𝑖

𝜎

]

−𝛷
[ log(𝑡𝑖𝑗−1) − 𝜇𝑖

𝜎

]}

.

(3)

The ML estimates of 𝜽 can be obtained by maximizing 𝓁(𝜽),
which can be implemented easily using the function optim()
provided in R software. The asymptotic covariance matrix of �̂�,
�̂��̂�, can be obtained by inverting the observed Fisher information
matrix.
3

2. In the second stage, the parameters in the distribution of batch
effects are estimated. �̂�𝑖s obtained in the first stage are treated as
the ‘‘observations’’ from model (2), then the estimates of (𝜂, 𝛿2)
can be easily obtained:

�̂� = 1
𝑘

𝑘
∑

𝑖=1
ln �̂�𝑖, 𝛿2 = 1

𝑘 − 1

𝑘
∑

𝑖=1

(

ln �̂�𝑖 −
1
𝑘

𝑘
∑

𝑖=1
ln �̂�𝑖

)2

, 𝑖 = 1,… , 𝑘.

(4)

This method has several significant advantages. It is computation-
ally simple and allows incorporating the batch effects. The CI of a func-
tion of the parameters 𝜇𝑖 and 𝜎2 can be computed by using asymptotic
normality theorem of ML estimator and delta method. For example, if
the 𝑝-percentile in the 𝑖th group 𝑡𝑖𝑝 = exp(𝜇𝑖 + 𝜎𝛷−1(𝑝)) is of interest,
then by plug-in method, the point estimate of 𝑡𝑖𝑝 is

𝑡𝑖𝑝 = exp(�̂�𝑖 + �̂�𝛷−1(𝑝)). (5)

From Meeker and Escobar [1], the 100(1 − 𝛼)% CI of 𝑡𝑖𝑝 can be
constructed as follows
[

𝑡𝑖𝑝∕𝑤, 𝑡𝑖𝑝 ×𝑤
]

, (6)

where 𝑤 = exp
(

𝑧(1−𝛼∕2) ŝe𝑡𝑖𝑝∕𝑡𝑖𝑝
)

, and se𝑡𝑖𝑝 is the standard error of 𝑡𝑖𝑝
that is calculated by delta method:

ŝe𝑡𝑖𝑝 = 𝑡𝑖𝑝
[

V̂ar(𝜇𝑖) + 2𝛷−1(𝑝)Ĉov(𝜇𝑖, �̂�) + [𝛷−1(𝑝)]2V̂ar(�̂�)
]1∕2

, (7)

where V̂ar(𝜇𝑖), V̂ar(�̂�) and Ĉov(𝜇𝑖, �̂�) are the corresponding elements in
�̂��̂� obtained from the first stage. However, the estimates of 𝜂 and 𝛿2 are
based on ‘‘pseudo sample’’ �̂�𝑖s, which means that we cannot calculate
the Fisher information matrix of (𝜂, 𝛿2) exactly in the second stage.
Thus, the CIs of 𝜂 and 𝛿2 cannot be computed directly by the asymptotic
normality theorem. In reliability engineering and quality control, boot-
strap has been widely used to construct CI of the quantity of interest, for
example, process incapability index [25], failure probability [26] and
others [27–29]. In our paper, there are two ways to perform bootstrap
resampling.

Bootstrap method I
(1) Obtain the estimate �̂� using the ML method based on the
observed data .
(2) Generate bootstrap sample ∗ from the log-location-scale
distribution when the parameter vector 𝜽 is replaced by �̂�.
(3) Based on the bootstrap sample ∗, obtain bootstrap estimates
�̂�∗, (𝜂∗, 𝛿∗) and 𝑡∗𝑖𝑝 by performing the direct two-stage method.
(4) Repeat steps 2 and 3 𝐵 times, then we have 𝐵 bootstrap
estimates
{

�̂�*
𝑠 =

(

�̂�*
𝑠 , �̂�*

𝑠 , �̂�
*
𝑠 , 𝛿*

𝑠 , 𝑡
*
𝑖𝑝𝑠

)

, 𝑠 = 1,… , 𝐵
}

.

Then an approximate 100(1 − 𝛼)% bootstrap CI for the func-
tion of the parameters 𝐺(𝛩) is given by

(

𝐺𝛼∕2, 𝐺1−𝛼∕2
)

, where
𝐺𝛼∕2 and 𝐺1−𝛼∕2 are the (𝛼∕2)th and (1 − 𝛼∕2)th percentiles of
{

𝐺
(

�̂�∗) , 𝑠 = 1,… , 𝐵
}

.
𝑠
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Bootstrap method II
In this method, the generation of bootstrap sample is a little
different from that in the first method. Firstly, based on model
(2), generate log𝜇(𝐵)

𝑖 from 𝑁(�̂�, 𝛿2), 𝑖 = 1,… , 𝑘. Then, generate
bootstrap sample in each batch from 𝐹

(

𝑡;𝜇(𝐵)
𝑖 , �̂�

)

in (1). Other
steps are the same as these in the first bootstrap method.

We denote the direct two-stage method as the ‘‘TS method’’ here-
inafter. Since the two bootstrap methods can lead to similar results in
the simulation, we mainly use the bootstrap method I below, denoted
as ‘‘BS method’’. When dealing with heavily censored interval data with
batch effects, the bootstrap samples generated by the BS method may
have zero failures, which may induce parameter identifiability problem
in the first stage. The FRW bootstrap method could avoid this problem
well, and we will introduce this method in the following section.

3.2. FRW bootstrap

The FRW bootstrap method introduced by Newton and Raftery [30]
provides an effective and easy-to-use approach to generate bootstrap
samples for various complicated problems. Xu et al. [31] gave a com-
prehensive review of FRW bootstrap and demonstrated many advan-
tages of this method. Compared with the commonly-used resampling
bootstrap procedure, the main idea of the FRW bootstrap suggests
selecting a random weight vector

(

𝑤1,… , 𝑤𝑛
)′ from a uniform Dirichlet

distribution for the 𝑛 observations rather than integer weights. It can
be shown that the fractional weights generated from the uniform
Dirichlet distribution are equivalent to generating the standardized
random weights from the standard exponential distribution. Let 𝑍𝑖, 𝑖 =
1,… , 𝑛 be a random sample of size 𝑛 from the standard exponential
distribution. Then, the random vector
(

𝑍1
∑𝑛

𝑖=1 𝑍𝑖
,… ,

𝑍𝑖
∑𝑛

𝑖=1 𝑍𝑖
… ,

𝑍𝑛
∑𝑛

𝑖=1 𝑍𝑖

)′

(8)

as a uniform Dirichlet distribution. Let 𝑋1, 𝑋2,… , 𝑋𝑛 be the 𝑛 observa-
ions. The implementation of the FRW bootstrap has two steps: firstly
enerate a random weights vector (𝑍1,… , 𝑍𝑛), then obtain the boot-
trap estimate of the model parameter based on the random weighted
og-likelihood

∗(𝝃) =
𝑛
∑

𝑖=1
𝑍𝑖𝓁𝑖

(

𝝃;𝑋𝑖
)

, (9)

here 𝓁𝑖(𝝃;𝑋𝑖) is the log-likelihood function for the 𝑖th observation,
nd 𝝃 is a general notation for the unknown parameter vector. It should
e noted that the term ∑𝑛

𝑖=1 𝑍𝑖 in (8) is omitted, as it has no effects on
he estimation.

Now, we incorporate the FRW bootstrap method into the two-
tage method based on interval censored data. The procedure for
mplementing FRW bootstrap to construct CI is as follows:

1. Generate random weights 𝑍𝑖1,… , 𝑍𝑖𝑛𝑖 from standard exponential
distribution for the 𝑖th batch. Denote that 𝑊𝑖𝑗 =

∑𝑀𝑖𝑗
ℎ=𝑀𝑖𝑗−1+1

𝑍𝑖ℎ,
𝑗 = 1,… , 𝑑𝑖 + 1. Then the random weighted log-likelihood can
be written as

𝓁∗ (𝜽) =
𝑘
∑

𝑖=1

𝑑𝑖+1
∑

𝑗=1
𝑊𝑖𝑗 log

{

𝛷
[ log(𝑡𝑖𝑗 ) − 𝜇𝑖

𝜎

]

−𝛷
[ log(𝑡𝑖𝑗−1) − 𝜇𝑖

𝜎

]}

.

(10)

Compared with (3), fractional weights 𝑊𝑖𝑗 are generated for
substituting 𝑚𝑖𝑗 in each bootstrap iteration. Using the function
optim() provided in R software, the estimates of 𝜽, 𝜽∗, can be
obtained easily. The parameter estimates of 𝜂, 𝛿2 and 𝑡𝑖𝑝 are
4

computed by Eqs. (4) and (5). o
Fig. 2. The results of BS and FRW bootstrap method for the Weibull scale parameters
(𝜂 = 4, 𝑛 = 2000).

Fig. 3. The values of ∑𝑛
𝑖=1 𝑍𝑖 for different distribution.

2. Repeat the above step 𝐵 times, and get 𝐵 bootstrap estimates
{(�̂�(𝑏), 𝑡(𝑏)𝑖𝑝 , �̂�

(𝑏), 𝛿(𝑏)), 𝑏 = 1,… , 𝐵}. Then the point estimates and
100(1 − 𝛼)% CIs for these parameters can be constructed based
on these bootstrap estimates. The detailed procedure is provided
in Appendix A.

3.3. Prediction

In this section, we discuss a procedure to give a point prediction
as well as the 100(1 − 𝛼)% prediction interval of the number of product
ailures in a certain future time. The probability that a product survives
t time 𝑡𝑑 but has been failed before time 𝑡 (𝑡 > 𝑡𝑑 ) can be formulated
s
(

𝑡|𝑡𝑑 ;𝜽
)

= Pr
(

𝑇 ≤ 𝑡|𝑇 > 𝑡𝑑
)

=
𝐹 (𝑡;𝜽) − 𝐹

(

𝑡𝑑 ;𝜽
)

1 − 𝐹
(

𝑡𝑑 ;𝜽
) , 𝑡 > 𝑡𝑑 . (11)

hen the future failures in the 𝑖th batch are of interest, 𝐹 (𝑡;𝜽) takes
orm of 𝐹

(

𝑡;𝜇𝑖, 𝜎
)

in (1). While the future failure number in the
opulation is of interest,

(𝑡;𝜽) = ∫

∞

0
𝐹
(

𝑡;𝜇𝑖, 𝜎
)

𝑓𝜇𝑖 (𝜇𝑖; 𝜂, 𝛿
2)d𝜇𝑖,

here 𝑓𝜇𝑖 (𝜇𝑖; 𝜂, 𝛿
2) is the PDF of 𝜇𝑖 defined in (2). Let 𝑛𝑡𝑑 be the number
f units that survive until time 𝑡𝑑 . Then, a point prediction of the
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number of product failures at time 𝑡 is 𝑛𝑡𝑑𝐹
(

𝑡|𝑡𝑑 ; �̂�
)

. The 100(1 − 𝛼)%
rediction interval can be constructed as follows:

(1) Based on the FRW bootstrap method in Section 3.2, we obtain
bootstrap estimates �̂�𝑏, 𝑏 = 1, 2,… , 𝐵.
(2) Compute 𝑈𝑏 = 𝑛𝑡𝑑𝐹 (𝑡|𝑡𝑑 ; �̂�𝑏), 𝑏 = 1,… , 𝐵.
(3) Let 𝑈 𝑙 and 𝑈 𝑢 denote the lower and upper 𝛼∕2 quantiles of

{𝑈𝑏, 𝑏 = 1,… , 𝐵}, respectively. The 100(1 − 𝛼)% prediction interval of
he number of product failures at time 𝑡 can be specified as

[

𝑈 𝑙 , 𝑈 𝑢].

.4. Model selection criteria

There may be several candidate lifetime distributions for fitting the
ata. We choose the Akaike’s information criterion (AIC) for model
election. The AIC is defined as follows:

𝐼𝐶 = −2𝓁 + 2𝑝, (12)

here 𝑝 is the number of parameters in the model, and 𝓁 is the log-
ikelihood function. Our goal is to choose the distribution with the
mallest AIC value.

. Simulation study

For illustrative purpose, assume that there are 𝑘 = 8 groups in the
xperiment, and that the lifetime of the product follows the Weibull
istribution. The CDF and PDF of the lifetime 𝑇𝑖 of the 𝑖th group are

respective

𝐹 (𝑡; 𝛾𝑖, 𝜔) = 1 − exp
[

−
(

𝑡
𝛾𝑖

)𝜔]

and 𝑓 (𝑡; 𝛾𝑖, 𝜔)

=
(

𝜔
𝛾𝑖

)(

𝑡
𝛾𝑖

)𝜔−1
exp

[

−
(

𝑡
𝛾𝑖

)𝜔]

,

here 𝛾𝑖 = exp(𝜇𝑖) is the scale parameter, and 𝜔 = 1∕𝜎 is the shape
arameter. The batch effects are described by (2), that is, ln𝜇𝑖 ∼

𝑁(𝜂, 𝛿2). The model parameters are 𝜔, 𝛿2 and 𝜂. We set 𝜔 = 0.8 and
corresponding to decreasing and increasing failure rate, respectively.

or the case of 𝜔 = 0.8, we choose 𝜂 = 5 and 8, and then there are
5

s

90% and 99% of the units are censored. When 𝜔 = 3, 𝜂 is set to
be 3 and 4 with the censoring rate 85% and 99%, respectively. For
all the cases, 𝛿2 = 0.1. Without loss of generality, the sample size in
each group is assumed to be the same, that is, 𝑛1 = ⋯ = 𝑛𝑘 = 𝑛.
We choose 𝑛 = 500, 1000 and 2000. The inspection time epochs are
(𝑡1, 𝑡2,… , 𝑡𝑚) = (1, 2,… , 10). Three two-stage methods (TS, BS and FRW)
are compared for each combination of (𝜔, 𝜂, 𝑛). The interval estimates
are constructed based on 1000 bootstrap samples for the BS and FRW
methods. The parameters of interest are the percentile lifetimes 𝑡𝑝 in
each group, where 𝑝 = 0.01, 0.05, 0.1 and 0.5. Except for this, we are
also interested in the scale parameters 𝛾1,… , 𝛾8 and shape parameter 𝜔,
and the parameters 𝜂 and 𝛿2 for batch effects. For the three two-stage
methods, the relative bias (RB) and the root mean square error (RMSE)
of the estimates of these parameters, the length of the 95% confidence
interval (LCI) are computed based on 1000 random samples. RB and
RMSE for the parameter 𝜈 based on 1000 repetitions are defined as
follows:

RB(�̂�) = 1
1000

1000
∑

𝑖=1

|

|

�̂�𝑖 − 𝜈|
|

𝜈
, RMSE(�̂�) =

(

1
1000

1000
∑

𝑖=1

(

�̂�𝑖 − 𝜈
)2
)1∕2

. (13)

Since the results based on 𝜔 = 0.8 and 3 are similar, we just list the
results of the percentiles for 𝜔 = 3 in Tables 3–5, where RB and RMSE
re multiplied by 100. The others simulation results can be found in
he supplementary. Some conclusions can be clearly summarized from
hese tables.

(1) For the heavily censored cases (𝜔 = 3, 𝜂 = 3), the RB, RMSE
nd LCI based on all the three methods become better and better as
he sample size increases. However, the RB and RMSE values based on
he FRW bootstrap method are the smallest for nearly all cases, and
hus FRW bootstrap method has the best performance. Among the three
ethods, BS method performs the worst, since some abnormal values

xist in the 1000 estimates of the percentile lifetimes which lead to
arge RBs and RMSEs. We will explain the drawback of BS method via
imulation later.

(2) For the extremely heavily censored cases (𝜔 = 3, 𝜂 = 4), the

uperiority of the FRW bootstrap method become more significant,
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Table 3
RB (in percentile) of the estimates of percentiles for 𝜔 = 3.

(𝜂, 𝑛) Group 𝑡0.01 𝑡0.05 𝑡0.1 𝑡0.5
TS BS FRW TS BS FRW TS BS FRW TS BS FRW

(3500)

1 4.165 7.764 1.608 2.932 8.869 1.269 2.497 9.089 0.966 2.199 9.581 0.594
2 3.969 4.909 1.421 2.820 4.707 0.942 2.504 4.936 0.775 2.816 5.981 0.337
3 4.093 4.534 1.458 3.233 4.184 0.908 2.967 4.173 0.647 2.973 5.200 0.213
4 4.621 4.584 1.491 4.049 3.841 0.936 3.954 3.797 0.689 4.244 4.385 0.229
5 3.889 4.079 1.323 3.655 3.875 0.958 3.721 3.978 0.689 4.520 5.120 0.215
6 5.327 5.433 1.388 5.177 5.270 0.903 5.261 5.437 0.696 5.923 6.327 0.188
7 5.894 6.236 1.368 5.661 5.930 0.891 5.776 6.126 0.680 6.482 7.051 0.186
8 5.733 8.174 1.391 5.689 8.205 0.922 5.841 8.399 0.692 6.607 9.273 0.167

(3,1000)

1 2.929 7.734 1.532 2.027 8.256 1.131 1.767 8.520 0.923 1.583 9.114 0.581
2 2.939 4.653 1.335 2.101 4.650 0.909 1.901 4.740 0.734 2.023 5.787 0.230
3 2.984 3.775 1.349 2.249 3.611 0.805 2.104 3.781 0.611 2.725 4.820 0.182
4 2.909 3.703 1.305 2.544 3.124 0.872 2.497 3.228 0.663 2.978 4.130 0.209
5 3.171 3.921 1.298 2.785 3.173 0.851 2.820 3.069 0.671 3.315 3.910 0.174
6 3.668 3.902 1.304 3.099 3.229 0.865 3.000 3.300 0.675 3.246 4.023 0.196
7 3.683 3.948 1.311 3.787 3.739 0.866 3.941 3.917 0.671 4.777 4.996 0.183
8 5.481 6.555 1.289 5.159 6.171 0.856 5.159 6.223 0.662 5.461 6.857 0.155

(3,2000)

1 2.266 7.029 1.501 1.596 7.829 1.120 1.354 8.216 0.907 1.117 9.003 0.499
2 2.071 4.088 1.330 1.486 4.084 0.900 1.332 4.192 0.714 1.297 4.818 0.203
3 2.049 2.908 1.301 1.544 2.750 0.801 1.395 2.815 0.587 1.519 3.646 0.162
4 2.221 3.463 1.272 1.890 3.152 0.833 1.791 3.158 0.640 1.918 3.651 0.170
5 2.221 2.857 1.273 1.997 2.562 0.847 1.947 2.573 0.661 2.082 2.953 0.167
6 2.305 2.722 1.296 2.079 2.369 0.854 2.106 2.406 0.666 2.474 3.232 0.184
7 3.090 3.176 1.244 2.971 3.127 0.807 2.994 3.299 0.616 3.334 4.215 0.147
8 3.711 4.155 1.247 3.764 4.122 0.808 3.839 4.208 0.620 4.197 4.839 0.127

(4500)

1 7.539 1032.274 2.921 6.802 898.27 1.563 7.677 845.866 1.279 14.199 724.509 0.639
2 10.870 48.482 2.925 8.744 38.798 1.568 9.792 36.551 1.285 16.558 37.033 0.403
3 13.217 1.95E+24 2.948 15.918 7.21E+24 1.589 17.588 6.55E+24 1.256 23.112 5.09E+24 0.429
4 25.809 1.86E+12 2.938 26.522 1.55E+12 1.573 27.094 1.43E+12 1.186 30.632 1.16E+12 0.388
5 17.609 5.27E+10 2.982 21.868 4.16E+10 1.615 23.857 3.75E+10 1.127 29.341 2.87E+10 0.387
6 32.080 8.18E+48 2.919 31.737 5.84E+48 1.558 32.184 5.03E+48 1.172 34.808 3.41E+48 0.366
7 33.419 7.99E+57 2.960 32.813 5.71E+57 1.601 32.750 4.92E+57 1.116 33.926 3.33E+57 0.371
8 23.564 8.18E+38 2.938 27.159 1.82E+38 1.578 28.887 1.60E+38 1.194 33.529 1.14E+38 0.351

(4,1000)

1 6.414 12.169 2.761 6.108 10.748 1.356 6.935 12.228 1.113 10.446 17.696 0.496
2 7.124 39.128 2.712 7.599 36.803 1.300 8.545 35.145 1.056 12.125 32.282 0.389
3 10.190 8.96E+19 2.736 11.523 1.39E+19 1.319 12.635 1.23E+19 1.075 16.209 8.13E+19 0.383
4 12.262 1.76E+08 2.755 13.312 1.28E+08 1.345 14.151 1.20E+08 1.102 17.331 1.26E+08 0.344
5 15.812 1.92E+07 2.758 16.472 1.61E+07 1.337 17.326 1.50E+07 1.091 19.942 1.61E+07 0.373
6 16.267 3.62E+09 2.741 16.740 3.26E+09 1.325 17.246 2.47E+09 1.082 19.538 1.78E+09 0.328
7 21.993 2.21E+31 2.756 22.122 1.63E+31 1.341 22.591 1.43E+31 1.096 24.584 1.00E+31 0.353
8 22.448 5.15E+27 2.749 22.307 3.81E+27 1.331 22.418 3.33E+27 1.085 23.211 2.12E+27 0.340

(4,2000)

1 4.383 4.868 2.094 4.059 4.329 1.160 4.680 4.902 0.821 7.444 7.570 0.432
2 5.306 6.117 2.090 5.901 6.424 1.155 6.721 7.216 0.814 9.691 10.120 0.218
3 6.484 7.958 2.096 7.586 8.779 1.159 8.471 9.580 0.816 11.322 12.304 0.218
4 8.438 11.135 2.085 9.204 11.536 1.161 9.811 12.069 0.818 12.256 14.132 0.234
5 9.129 2.65E+05 2.078 10.116 2.48E+05 1.163 10.846 2.40E+05 0.814 13.335 2.22E+05 0.219
6 10.409 108.714 2.099 11.386 92.575 1.167 12.138 86.670 0.819 14.564 74.311 0.206
7 14.724 9.58E+05 2.106 15.320 7.60E+05 1.168 15.933 6.86E+05 0.825 18.082 5.25E+05 0.229
8 16.686 2.78E+08 2.098 17.182 2.09E+08 1.160 17.620 1.84E+08 0.817 19.127 1.32E+08 0.211
namely we can still obtain reasonable RB, RMSE and LCI of the esti-
mates by the FRW bootstrap method, while BS method almost fails to
deal with extremely heavily censored data, and TS method produces
some abnormal values of RMSE and LCI of the parameters 𝛾1,… , 𝛾8.

From the above analysis, we see that the FRW bootstrap is effective
for constructing interval estimation when the data is heavily censored,
in which case BS method usually fails. For the BS method, conventional
bootstrap is used in the resampling step, which may induce zero-failure
in some batches in the bootstrap samples. The probability of producing
zero-failure cases will increase as the censoring rate increases. Then
the ML estimates of the scale parameters in these zero-failure batches
will diverge to infinity, which explains why there are many abnormal
bootstrap estimates using BS method. While for FRW bootstrap method,
fractional random weights are generated for the observations, which
avoids the zero-failure case and the ML estimates would exist if the
original data are reasonable. For illustration, we generate an interval
failure data when 𝜂 = 4, 𝑛 = 2000, then record the bootstrap estimates of
he scale parameters for BS and FRW bootstrap methods. The estimates
re shown in Fig. 2, where ‘‘BS_remove’’ denotes the bootstrap esti-
ates when the zero-failure cases are removed. As can be seen in Fig. 2,
6

the variation among bootstrap estimates has been greatly reduced after
removing zero-failure cases. However, its performance is still worse
than FRW bootstrap method. For FRW bootstrap method, the variations
among bootstrap estimates are induced by random weights for the
original observations. We sum these weights, and generate 50 random
samples of the summation, which are shown in Fig. 3, where the results
based on the two alternative distributions of 𝑍𝑖, 𝐺𝑎𝑚𝑚𝑎(0.5, 0.5) and
𝐺𝑎𝑚𝑚𝑎(2, 2), are also listed. From Fig. 3, we see that the values of
∑𝑛

𝑖=1 𝑍𝑖 for different distributions are all stable around 16000 (since
the total sample size ∑8

𝑖=1 𝑛𝑖 = 16000). Thus, the variations among the
bootstrap estimates that are based on the weighted likelihood functions
will be small.

5. Real data analysis

In this section, we will analyze the interval failure data of PCB
in Table 1, and provide the solutions of the three problems from the
manufacturer.
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Table 4
RMSE (in percentile) of the estimates of percentiles for 𝜔 = 3.

(𝜂, 𝑛) Group 𝑡0.01 𝑡0.05 𝑡0.1 𝑡0.5
TS BS FRW TS BS FRW TS BS FRW TS BS FRW

(3500)

1 16.812 28.677 5.354 20.109 49.251 6.690 21.625 65.588 7.222 34.624 134.980 8.515
2 17.709 21.855 5.734 22.376 34.434 6.636 25.753 44.384 6.679 52.950 99.651 5.418
3 19.554 21.354 6.469 25.123 32.616 7.414 29.115 41.760 7.399 59.758 95.619 4.085
4 24.565 24.400 7.206 36.838 34.868 8.271 46.250 43.832 8.235 98.893 99.423 5.119
5 24.788 26.287 7.969 39.205 42.125 9.127 50.340 55.019 9.080 111.016 126.985 4.478
6 36.018 36.740 8.729 61.462 63.298 9.865 79.984 83.356 9.713 169.601 184.031 5.089
7 47.900 53.457 10.109 79.505 88.960 12.558 101.839 114.428 11.466 206.466 235.118 5.482
8 81.566 99.233 12.470 140.030 167.048 14.313 199.480 213.114 14.233 362.683 518.896 5.751

(3,1000)

1 10.546 28.044 5.059 12.278 47.913 6.154 13.559 65.197 6.594 27.340 134.322 8.086
2 13.112 19.179 5.497 16.154 32.364 6.417 18.387 42.811 6.506 37.816 96.580 4.399
3 14.681 18.389 5.847 19.991 28.953 6.553 24.380 38.135 6.357 54.664 90.247 3.449
4 16.141 19.336 7.024 25.129 27.935 8.165 32.196 36.134 8.181 71.838 87.113 4.931
5 19.239 22.846 7.443 28.329 31.649 8.501 35.873 39.309 8.383 79.581 91.314 3.990
6 25.909 27.214 8.497 39.606 40.412 9.827 49.770 51.719 9.685 103.351 119.614 4.903
7 29.431 32.178 9.988 52.925 51.873 11.572 71.526 68.755 11.098 163.776 163.742 5.248
8 65.402 97.082 11.830 112.230 165.401 13.768 144.956 212.209 13.708 294.220 424.056 5.661

(3,2000)

1 7.816 24.066 4.923 9.674 44.993 6.132 10.726 59.637 6.525 18.457 125.569 6.749
2 8.440 16.810 5.090 10.766 28.285 5.949 12.281 36.813 5.985 22.732 79.521 3.678
3 9.989 13.232 5.467 13.588 21.113 6.311 16.079 27.592 6.302 31.670 65.216 3.880
4 11.519 17.492 6.132 16.485 26.455 6.955 20.184 33.367 6.833 40.457 72.493 3.317
5 13.802 15.959 6.771 20.867 23.504 7.756 25.891 30.107 7.685 51.062 69.279 4.230
6 14.792 16.654 7.618 23.598 26.617 8.738 30.130 35.315 8.662 63.763 84.944 4.418
7 23.426 22.536 8.606 39.994 39.673 9.734 51.675 53.268 9.534 105.993 123.304 4.305
8 37.019 40.519 10.714 64.668 70.043 12.065 83.755 91.298 11.752 169.418 192.563 4.423

(4500)

1 85.514 7.51E+04 23.902 103.692 1.13E+05 24.818 152.510 1.35E+05 21.658 595.631 2.15E+05 9.083
2 113.459 3247.502 28.579 174.787 3247.502 26.177 257.597 4877.670 25.111 844.262 1797.478 9.621
3 151.468 1.48E+26 32.478 297.723 2.05E+26 30.608 419.749 2.37E+26 27.776 1113.122 3.46E+26 9.893
4 431.158 1.35E+14 36.261 735.363 1.85E+14 34.908 945.576 5.49E+14 31.846 2038.268 8.06E+14 11.119
5 290.264 2.98E+06 42.250 693.283 4.23E+06 39.122 998.554 4.82E+06 34.628 2489.260 7.52E+06 10.996
6 394.037 1.87E+50 47.639 819.127 5.02E+50 43.724 1124.826 2.52E+50 39.163 2652.087 8.45E+50 11.484
7 550.581 2.37E+59 54.774 1004.276 1.51E+59 50.841 1487.194 3.19E+59 45.425 2772.735 2.54E+59 13.644
8 571.501 6.84E+40 64.439 997.195 6.56E+40 60.025 1350.057 9.83E+40 54.193 2706.635 1.54E+40 15.643

(4,1000)

1 64.006 111.309 23.506 86.227 196.854 22.563 144.815 282.178 19.356 383.607 737.634 8.563
2 77.717 466.069 28.324 136.136 734.391 25.611 191.828 915.611 23.186 502.859 1165.321 8.587
3 120.243 1.86E+21 31.421 227.440 2.29E+21 30.314 315.299 2.51E+21 27.117 762.027 3.19E+21 8.618
4 186.127 1.92E+09 35.646 344.470 2.36E+09 33.465 463.456 2.58E+09 29.516 1035.917 3.28E+09 9.297
5 308.866 1.57E+04 39.088 517.843 5.33E+04 38.101 663.749 6.17E+04 34.603 1327.124 7.07E+04 10.807
6 315.282 3.84E+11 44.297 519.007 5.06E+11 43.175 663.982 7.40E+11 38.530 1334.708 7.76E+11 11.156
7 499.859 3.88E+33 50.924 845.098 5.27E+33 49.873 1078.445 6.03E+33 45.069 2102.923 8.59E+33 12.119
8 518.472 7.30E+28 61.155 957.540 9.29E+28 59.672 1224.020 1.03E+28 53.322 2408.467 1.37E+28 13.974

(4,2000)

1 44.911 49.574 19.542 81.480 86.558 19.852 117.113 123.385 18.548 311.646 326.115 6.216
2 71.657 82.382 23.387 117.234 127.385 23.523 159.671 169.685 21.774 396.069 409.890 7.094
3 109.539 134.098 26.740 206.017 240.838 26.993 278.849 320.294 25.076 626.807 697.464 7.193
4 124.206 155.031 29.312 231.091 276.877 29.426 311.238 366.593 27.179 695.442 789.840 8.618
5 148.842 195.125 32.462 289.940 355.226 32.697 392.823 470.115 30.276 871.425 997.190 9.393
6 240.340 475.433 35.888 419.032 758.710 36.041 542.855 942.267 33.269 1096.862 1710.943 10.923
7 265.625 448.096 41.115 470.890 724.329 41.353 616.690 906.790 38.199 1292.458 1698.005 9.731
8 458.598 1009.656 50.194 802.434 1605.973 50.359 1033.625 1982.139 46.429 2035.657 3496.345 11.257
For the first problem, we use the model in Section 2 to fit the data,
nd choose exponential, Weibull, lognormal and loglogistic distribu-
ions as the candidate models. The AIC values for the four distributions
re listed in Table 6, from which we can see that Weibull distribution
as the smallest AIC value. Thus, we choose Weibull distribution to fit
he real data.

For the second problem, three two-stage methods are utilized to
btain the point and interval estimates of the model parameters as
ell as the percentile lifetimes of each batch. CIs are constructed based
n 1000 bootstrap samples, and the results are listed in Table 7. As
an be see in Table 7, the point estimates of the parameters based on
he three methods are close to each other, while LCI based on FRW
ethod are the shortest that is consistent to the simulation results. For

stimating the percentile lifetimes of each batch, the results are similar,
or which we draw these lengths in Fig. 4. After obtaining the estimates
f the parameters, the cumulative number of failures at different time
ntervals in each batch are also fitted, and the 95% point-wise CIs of
he cumulative number of failures are computed. The results are shown
n Fig. 5, where the 𝑖th subfigure shows the results of the 𝑖th batch. As
7

can be seen in each subfigure, the fitted cumulative numbers of failures
by the proposed model are close to the observed data, and almost all
the observed data lie in the 95% point-wise CIs, which indicates that
the model fits the data well.

For the last problem, we fit the model by using interval failure
data before 9 weeks, and predict the number of failures in the period
of the tenth week. Then the prediction result can be well assessed
because the true number of failures is known in the time interval.
As a comparison, the prediction based on the model without batch
effects and the model for each batch are also computed, which can be
conducted by pooling the data together and separate batch to make
statistical inference, respectively. Table 8 lists the points prediction
and 95% CI of the number of failures in the tenth weeks based on
the three methods as well as the true values for each batch. From
Table 8, we can see that the prediction based on the model without
batch effects performs badly, which disperses the true values widely.
The point predictions between separate batch and considering batch
effects are very close. If we are interested in the number of failures in
the population, there are actually 239 units failing in the tenth week.
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Table 5
LCI of the estimates of percentiles for 𝜔 = 3.

(𝜂, 𝑛) Group 𝑡0.01 𝑡0.05 𝑡0.1 𝑡0.5
TS BS FRW TS BS FRW TS BS FRW TS BS FRW

(3500)

1 0.530 0.731 2.003 0.910 0.962 2.321 1.152 1.102 2.358 2.105 1.897 2.163
2 0.763 0.909 2.337 1.312 1.296 2.703 1.663 1.559 2.735 3.046 2.946 2.295
3 0.948 1.107 2.575 1.630 1.674 2.967 2.066 2.068 2.971 3.790 4.027 2.317
4 1.277 1.438 2.894 2.202 2.295 3.321 2.795 2.889 3.310 5.154 5.699 2.316
5 1.405 1.735 3.191 2.421 2.834 3.643 3.072 3.588 3.611 5.658 7.078 2.360
6 1.846 2.239 3.507 3.186 3.752 3.997 4.048 4.783 3.945 7.492 9.442 2.510
7 2.441 3.033 3.894 4.206 5.150 4.444 5.341 6.574 4.379 9.893 12.844 2.583
8 4.102 5.387 4.662 7.072 9.244 5.288 8.986 11.801 5.185 16.725 22.738 2.694

(3,1000)

1 0.383 0.515 1.667 0.660 0.681 1.958 0.836 0.783 2.012 1.533 1.355 2.040
2 0.537 0.641 1.924 0.921 0.916 2.226 1.167 1.104 2.229 2.134 2.086 2.016
3 0.683 0.793 2.175 1.174 1.205 2.503 1.487 1.491 2.530 2.725 2.904 2.183
4 0.892 1.014 2.429 1.535 1.620 2.788 1.948 2.041 2.772 3.584 4.022 2.215
5 1.008 1.213 2.640 1.734 1.984 3.012 2.199 2.517 2.991 4.043 4.975 2.229
6 1.364 1.611 2.971 2.345 2.703 3.388 2.974 3.444 3.346 5.485 6.776 2.231
7 1.908 2.242 3.393 3.287 3.825 3.850 4.175 4.889 3.777 7.740 9.557 2.402
8 3.989 4.218 4.042 6.938 7.283 4.555 8.853 9.314 4.461 16.693 18.009 2.516

(3,2000)

1 0.226 0.332 1.418 0.387 0.432 1.664 0.489 0.491 1.698 0.891 0.826 1.653
2 0.327 0.418 1.641 0.560 0.592 1.879 0.709 0.710 1.895 1.292 1.327 1.611
3 0.410 0.506 1.848 0.702 0.761 2.121 0.889 0.938 2.125 1.623 1.816 1.731
4 0.503 0.617 2.049 0.863 0.967 2.340 1.093 1.210 2.335 1.998 2.366 1.742
5 0.579 0.748 2.228 0.993 1.207 2.541 1.257 1.521 2.511 2.298 2.980 1.806
6 0.782 0.973 2.501 1.342 1.614 2.845 1.701 2.051 2.807 3.126 4.022 1.786
7 1.153 1.377 2.873 1.983 2.335 3.254 2.516 2.981 3.195 4.652 5.812 1.895
8 2.082 2.357 3.550 3.577 4.045 4.014 4.539 5.167 3.931 8.421 9.949 2.103

(4500)

1 9.691 10.238 5.614 16.919 17.606 6.113 21.614 22.702 5.885 40.484 45.702 2.948
2 19.098 17.591 6.751 31.845 29.225 7.412 40.840 38.986 7.170 77.541 74.774 3.346
3 24.306 30.799 7.723 42.413 50.809 8.431 54.194 63.445 8.120 102.032 119.924 3.703
4 60.302 114.263 8.575 100.450 174.005 9.331 126.065 210.300 8.942 228.683 350.513 3.875
5 59.157 64.379 9.843 106.687 109.534 10.787 138.539 138.512 10.381 274.026 260.188 4.022
6 187.614 1602.767 11.187 305.396 2112.709 12.186 379.704 2438.594 11.707 675.157 3464.484 4.427
7 259.670 2101.317 12.691 455.788 2931.135 13.808 585.820 3404.315 13.231 1135.564 5200.364 4.700
8 125.401 214.168 14.515 229.545 337.629 15.829 299.915 417.646 15.186 603.088 730.785 5.263

(4,1000)

1 8.281 7.111 5.120 13.961 12.191 5.640 17.536 16.621 5.468 31.288 32.176 2.898
2 18.305 11.792 6.142 25.474 19.072 6.750 38.907 25.659 6.520 66.202 48.246 3.139
3 19.944 26.141 6.816 34.485 41.215 7.484 43.867 50.324 7.227 81.626 89.055 3.300
4 19.282 20.026 7.669 32.864 34.436 8.391 41.525 44.673 8.066 75.735 85.130 3.460
5 34.410 29.929 8.556 58.202 50.398 9.387 73.357 63.714 9.048 133.545 118.981 3.774
6 35.236 47.379 9.505 59.016 77.214 10.409 74.076 96.874 9.992 133.446 175.678 3.927
7 51.451 67.043 10.700 86.704 107.781 11.698 109.109 133.810 11.223 197.986 234.431 4.191
8 67.436 104.400 12.813 113.305 166.393 13.990 142.450 205.386 13.412 258.272 358.464 4.798

(4,2000)

1 5.712 5.128 4.607 9.818 8.798 5.102 12.443 11.367 4.961 22.797 23.227 2.752
2 7.688 7.226 5.463 13.247 12.577 6.032 16.813 16.270 5.844 30.977 32.929 2.928
3 9.712 9.680 6.207 16.757 16.895 6.830 21.286 21.817 6.603 39.368 43.642 3.087
4 12.400 12.652 6.867 21.325 21.983 7.555 27.052 28.277 7.292 49.914 55.735 3.237
5 13.466 15.969 7.534 23.103 27.642 8.285 29.278 35.449 7.987 53.847 69.148 3.396
6 16.606 20.659 8.321 28.522 35.513 9.142 36.172 45.349 8.799 66.757 87.272 3.577
7 31.686 32.721 9.417 54.462 55.456 10.326 69.135 70.293 9.932 128.415 132.198 3.858
8 38.053 46.835 11.473 65.012 78.407 12.572 82.323 98.787 12.057 152.036 182.604 4.406
Only 152 failures are reported if no batch effects are assumed. For the
separate batch method, there are 255 units failing in the tenth week,
which is close to 249 predicted by the proposed method. However, the
95% prediction CI with considering batch effects is [171, 325], which
is much shorter than [134, 380] by separate batch method. In the batch
effects model, a common scale parameter is shared for each batch, and
statistical strength shared by the population can be leverage to improve
the prediction for each batch. Thus, the precision of prediction can be
greatly improved by considering batch effects in the model.

In fact, making accurate future failure numbers prediction benefits
the reduction of inventory cost. When products fail under warranty
coverage, customers return their products for repair or replacement. For
manufacturers, it is necessary to prepare a certain amount of inventory
to deal with product maintenance in a certain future period (e.g., next
month). The amount of inventory can be easily determined with point
prediction or upper bound of 95% CI as described in Table 8. Inventory
cost would be greatly saved with the proposed model that has the
8

precise prediction of failure numbers. The proposed model can also
be used to estimate field reliability, and to determine whether it is
necessary to recall products from certain batches that have critical
failure modes. For example, the reliability of PCB from the first two
batches in the real case is significantly smaller than the other batches.
Then careful detection should be implemented for these failures. If
the high failure probability is only due to materials issues, then some
targeted solutions can be presented to solve these problems. While, if
critical failure modes have been detected, these PCBs would be recalled
from the market.

6. Conclusion and discussion

In this paper, we have proposed an improved two-stage method
combined with FRW bootstrap to analyze the interval failure data, fo-
cusing on the heavily censored data with batch effects. We compare the
proposed method with the other two alternatives through simulation
studies. The results show that the proposed method demonstrates better
performance in terms of RB, RMSE and LCI, especially for extremely
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Fig. 5. The fitted cumulative number of failure for each batch based on the proposed model.
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eavily censored data. In the data analysis, we utilize AIC to choose the
eibull distribution as the best distribution among four candidates. We

se the proposed model and the other two models to predict the number
f failures in a certain time period, and find that the predictions based
n the proposed model are close to the true values, while the model
9

ithout batch effects performs badly. c
The data considered in this paper are interval censored with batch
ffects. There are several possible future research directions worthing
tudying. Firstly, due to the limitation of test conditions, the units
ay be tested in several chambers, and thus the interval failure data
ay have both subsamlping and block effects. Secondly, for reducing

he experiment time, ALT is a commonly used way in practice. Then
ovariates should be incorporated into the model. Interval failure data
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Table 6
AIC for the different distributions.
Distribution AIC

Exponential 5102.53
Weibull 3581.65
Lognormal 3981.28
Loglogistic 3860.94

Table 7
The estimates of the parameters based on different methods for the real dataset.

TS BS FRW

𝜃 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean

𝛾1 15.866 18.579 17.222 16.031 18.618 17.256 16.007 18.356 17.220
𝛾2 15.958 18.712 17.335 16.154 18.806 17.398 16.048 18.371 17.326
𝛾3 20.907 26.628 23.768 21.177 27.095 23.884 22.323 25.177 23.769
𝛾4 24.305 32.925 28.615 24.73 33.772 28.835 26.998 29.667 28.586
𝛾5 31.737 51.223 41.480 32.895 54.629 42.061 40.373 42.823 41.487
𝛾6 32.151 52.667 42.409 33.409 56.099 42.945 41.066 43.893 42.418
𝛾7 33.991 59.462 46.727 35.962 65.311 47.889 45.615 48.255 46.761
𝛾8 36.244 72.445 54.345 39.568 83.829 56.264 53.045 55.589 54.346

𝜔 2.860 3.448 3.154 2.966 3.353 3.155 2.733 3.731 3.171

𝜂 3.348 3.558 3.448 3.423 3.458 3.441

𝛽 0.150 0.321 0.219 0.186 0.231 0.205

Table 8
Point prediction and 95% CI of the number of failures in the tenth weeks for each
batch based on different models.

Model Batch Total

1 2 3 4 5 6 7 8

Separate batch
2.50% 52 58 16 6 1 1 0 0 134
Mean 100 86 31 19 6 6 4 3 255
97.50% 141 120 48 30 12 13 10 6 380

Without batch effects
2.50% 7 7 7 7 7 7 7 7 56
Mean 17 17 17 17 17 17 17 17 136
97.50% 33 33 33 33 33 33 33 33 264

With batch effects
2.50% 67 67 19 10 3 2 2 1 171
Mean 98 84 29 18 6 6 5 3 249
97.50% 120 107 41 24 10 10 8 5 325

True 99 81 28 16 4 6 3 2 239

with subsamlping and block effects based on ALT needs to be consid-
ered in this situation. Finally, for some repairable systems, the data
is recurrent for each system. When the interval recurrent data have
subsamlping and block effects, finding a suitable model or statistical
inference method is more challenging.
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Appendix A

Algorithm 1: FRW bootstrap algorithm
Input: Observation data .
Output: The point estimates and 100(1 − 𝛼)% CIs for parameters

(�̂�, 𝑡𝑖𝑝, �̂�, 𝛿).
1 for 𝑏 in {1, 2,… , 𝐵} do
2 Generate random weights 𝑍𝑖1,… , 𝑍𝑖𝑛𝑖 , 𝑖 = 1,… , 𝑘 from

standard exponential distribution;
3 Denote 𝑀𝑖0,𝑀𝑖𝑗 and 𝑊𝑖𝑗 ;
4 Obtain �̂�(𝑏), by Eq. (10);
5 Calculate 𝑡(𝑏)𝑖𝑝 , �̂�

(𝑏), 𝛿(𝑏), by Eqs. (4) and (5);
6 end
7 Calculate the point estimates and 100(1 − 𝛼)% CIs for these

parameters.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ress.2021.107622.
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